Dynamical Study of Nonlinear Fractional-order Schrödinger Equations with Bifurcation, Chaos and Modulation Instability Analysis

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY International Journal of Theoretical Physics Pub Date : 2024-10-01 DOI:10.1007/s10773-024-05776-8
Xu Wang, Yiqun Sun, Jianming Qi, Shaheera Haroon
{"title":"Dynamical Study of Nonlinear Fractional-order Schrödinger Equations with Bifurcation, Chaos and Modulation Instability Analysis","authors":"Xu Wang,&nbsp;Yiqun Sun,&nbsp;Jianming Qi,&nbsp;Shaheera Haroon","doi":"10.1007/s10773-024-05776-8","DOIUrl":null,"url":null,"abstract":"<div><p>Our research on fractional-order nonlinear Schrödinger equations (FONSEs) reveals several new findings, which may contribute to our comprehension of wave dynamics and hold practical importance for the field of ocean engineering. We have employed an innovative approach to derive double periodic Weierstrass elliptic function solutions for FONSEs, thereby offering exact solutions for these equations. Additionally, we have observed that fractional derivatives significantly impact the dynamics of solitary waves, potentially holding significance for the design of ocean structures. Our research reveals the previously unknown phenomenon of oblique wave variations, which can impact the reliability and lifespan of offshore structures. Our findings highlight the significance of taking into account various fractional derivatives in future studies. Using the planar dynamical system technique, we gain a deeper understanding of the behavior of FONSEs, revealing critical thresholds and regions of chaotic behavior. Linear stability analysis provides a strong framework for studying the modulation instability of dynamical systems, shedding light on the conditions and mechanisms of modulated behavior. Applying this analysis to the FONSEs offers insights into the critical parameters, growth rates, and formation of modulated patterns, with potential implications for innovative research in ocean engineering.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05776-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Our research on fractional-order nonlinear Schrödinger equations (FONSEs) reveals several new findings, which may contribute to our comprehension of wave dynamics and hold practical importance for the field of ocean engineering. We have employed an innovative approach to derive double periodic Weierstrass elliptic function solutions for FONSEs, thereby offering exact solutions for these equations. Additionally, we have observed that fractional derivatives significantly impact the dynamics of solitary waves, potentially holding significance for the design of ocean structures. Our research reveals the previously unknown phenomenon of oblique wave variations, which can impact the reliability and lifespan of offshore structures. Our findings highlight the significance of taking into account various fractional derivatives in future studies. Using the planar dynamical system technique, we gain a deeper understanding of the behavior of FONSEs, revealing critical thresholds and regions of chaotic behavior. Linear stability analysis provides a strong framework for studying the modulation instability of dynamical systems, shedding light on the conditions and mechanisms of modulated behavior. Applying this analysis to the FONSEs offers insights into the critical parameters, growth rates, and formation of modulated patterns, with potential implications for innovative research in ocean engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性分数阶薛定谔方程的动力学研究与分岔、混沌和调制不稳定性分析
我们对分数阶非线性薛定谔方程(FONSEs)的研究揭示了一些新发现,这些发现可能有助于我们理解波浪动力学,并对海洋工程领域具有重要的实际意义。我们采用创新方法推导出了 FONSE 的双周期魏尔斯特拉斯椭圆函数解,从而为这些方程提供了精确解。此外,我们还观察到分数导数对孤波动力学有显著影响,这对海洋结构的设计具有潜在意义。我们的研究揭示了以前未知的斜波变化现象,这会影响近海结构的可靠性和寿命。我们的研究结果强调了在未来研究中考虑各种分数导数的重要性。利用平面动力系统技术,我们对 FONSE 的行为有了更深入的了解,揭示了临界阈值和混沌行为区域。线性稳定性分析为研究动力系统的调制不稳定性提供了一个强有力的框架,揭示了调制行为的条件和机制。将这一分析应用于 FONSE 可深入了解调制模式的临界参数、增长率和形成,对海洋工程领域的创新研究具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
期刊最新文献
A Lightweight and Efficient Multiparty Semi-Quantum Secret Sharing Protocol Using Entangled States for Sharing Specific Bit Frozen Quantum Coherence in Qutrit System Non-Markovian Gravitational Decoherence and the Black Hole Information Paradox Max-Cut Linear Binary Classifier Based on Quantum Approximate Optimization Algorithm Consequences of Gödel’s Theorems on Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1