Jeffrey Lebepe, Mapurunyane C. Selala, Yuki Takai, Neo M. Maleka, Sanelisiwe B. S. Hlatshwayo
{"title":"Accumulation of Heavy Metals in Tissues of Oreochromis Mossambicus from the uMgeni River and Human Health Risk Assessment","authors":"Jeffrey Lebepe, Mapurunyane C. Selala, Yuki Takai, Neo M. Maleka, Sanelisiwe B. S. Hlatshwayo","doi":"10.1007/s11270-024-07553-z","DOIUrl":null,"url":null,"abstract":"<div><p>Metal enrichment in aquatic ecosystems has compromised the potential of fish to enhance food security. The uMgeni River drains urban and industrialized catchment and flows through economically disadvantaged rural communities that opt for fish to supplement their protein needs. However, there are uncertainties on the safety of consuming fish from the uMgeni River. The present study aims to explore metal distribution between the water, sediment, and tissues of the preferred <i>Oreochromis mossambicus</i>, and evaluate whether concentrations in the muscle are safe for human consumption. The water, sediment, and fish samples were collected from Inanda and Nagle dams, and metal concentrations were analysed using inductively coupled plasma mass spectrometry. Alkaline pH was observed at both dams and metals were below detectable level in the water column. Even though metal concentrations in the water column were below detectable levels, significant concentrations were found in the sediment. No consistent trend in metal concentrations was observed across tissues, but higher levels were generally found in the liver, followed by the gill, and then the muscle. Nickel (Ni) and lead (Pb) exhibited concentrations exceeding the permissible limit for human consumption. Similarly, the target hazard quotient exceeded the threshold of 1 for Pb, chromium (Cr), and antimony (Sb) at both dams with Inanda Dam showing higher indices for Sb and Pb. The carcinogenic risk for the three metals was also found to be higher than 10<sup>–6</sup>. These findings suggest that consumption of <i>O. mossambicus</i> from the uMgeni River should be limited to no more than 150 g per week.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-024-07553-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07553-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal enrichment in aquatic ecosystems has compromised the potential of fish to enhance food security. The uMgeni River drains urban and industrialized catchment and flows through economically disadvantaged rural communities that opt for fish to supplement their protein needs. However, there are uncertainties on the safety of consuming fish from the uMgeni River. The present study aims to explore metal distribution between the water, sediment, and tissues of the preferred Oreochromis mossambicus, and evaluate whether concentrations in the muscle are safe for human consumption. The water, sediment, and fish samples were collected from Inanda and Nagle dams, and metal concentrations were analysed using inductively coupled plasma mass spectrometry. Alkaline pH was observed at both dams and metals were below detectable level in the water column. Even though metal concentrations in the water column were below detectable levels, significant concentrations were found in the sediment. No consistent trend in metal concentrations was observed across tissues, but higher levels were generally found in the liver, followed by the gill, and then the muscle. Nickel (Ni) and lead (Pb) exhibited concentrations exceeding the permissible limit for human consumption. Similarly, the target hazard quotient exceeded the threshold of 1 for Pb, chromium (Cr), and antimony (Sb) at both dams with Inanda Dam showing higher indices for Sb and Pb. The carcinogenic risk for the three metals was also found to be higher than 10–6. These findings suggest that consumption of O. mossambicus from the uMgeni River should be limited to no more than 150 g per week.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.