M. Štamborská, T. Pelachová, D. Danko, L’. Orovčík
{"title":"Influence of hot forging on grain formation in Al0.35CoCrFeNi high-entropy alloy: numerical simulation, microstructure and mechanical properties","authors":"M. Štamborská, T. Pelachová, D. Danko, L’. Orovčík","doi":"10.1007/s43452-024-01051-z","DOIUrl":null,"url":null,"abstract":"<div><p>One-step (F100) and three-step (F30-60-40) hot forging of Al<sub>0.35</sub>CoCrFeNi alloy was investigated to achieve a uniform equiaxed grain structure. In the as-cast and forged state, only a single-phase face-centered cubic structure was observed. The formation of twins, recrystallized and partially recrystallized grains in the volume of the samples was observed depending on used forging process. To predict uniform grain-size formation numerical simulation of the hot-forging process was used. The numerical model was calibrated and validated by means of measured compression experimental data of as-cast Al<sub>0.35</sub>CoCrFeNi alloy before forging. Thermal analysis using finite element analysis was used to simulate cooling of sample during the relocation from the furnace on the lower die. Simulations were run under different thermo-mechanical conditions and the regions for the formation of dynamically recrystallized grains were predicted. Room temperature mechanical properties were evaluated after F100 and F30-60-40 hot-forging process. The F30-60-40 hot forging optimized the grain size, which was evident in the very small dispersion of the room temperature mechanical properties in tension. Elongation after F30-60-40 hot forging increased by 17%. The correlation between temperature, equivalent stress, equivalent plastic strain, microstructure, tensile properties, and strain-hardening behavior is discussed.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01051-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01051-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
One-step (F100) and three-step (F30-60-40) hot forging of Al0.35CoCrFeNi alloy was investigated to achieve a uniform equiaxed grain structure. In the as-cast and forged state, only a single-phase face-centered cubic structure was observed. The formation of twins, recrystallized and partially recrystallized grains in the volume of the samples was observed depending on used forging process. To predict uniform grain-size formation numerical simulation of the hot-forging process was used. The numerical model was calibrated and validated by means of measured compression experimental data of as-cast Al0.35CoCrFeNi alloy before forging. Thermal analysis using finite element analysis was used to simulate cooling of sample during the relocation from the furnace on the lower die. Simulations were run under different thermo-mechanical conditions and the regions for the formation of dynamically recrystallized grains were predicted. Room temperature mechanical properties were evaluated after F100 and F30-60-40 hot-forging process. The F30-60-40 hot forging optimized the grain size, which was evident in the very small dispersion of the room temperature mechanical properties in tension. Elongation after F30-60-40 hot forging increased by 17%. The correlation between temperature, equivalent stress, equivalent plastic strain, microstructure, tensile properties, and strain-hardening behavior is discussed.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.