{"title":"Synthesis and physicochemical properties of doxorubicin-loaded PEGA containing amphiphilic block polymeric micelles","authors":"Pradeep Kumar Panda, Chen-Yan Hsieh, Yun-Tung Shen, Ya-Hui Tsai, Huang-Wen Tsai, Chao-Ling Yao, Yun Chen, Po-Chih Yang","doi":"10.1007/s10965-024-04153-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we aim to synthesize self-assembled amphiphilic diblock poly(PEGA-<i>b</i>-HEA-PCL) copolymers through RAFT living polymerization, targeting the delivery of hydrophobic anticancer drugs. The synthesized self-assembled diblock copolymers polymeric micelles (PMs) comprising poly(ethylene glycol) methyl ether acrylate (PEGA), as a hydrophilic segment and 2-hydroxyethyl acrylate-polyhexanoate monomer (HEA-PCL) with different block lengths, as a hydrophobic segment. The chemical structures, compositions, and self-assembled behavior were identified through <sup>1</sup>H NMR spectroscopy. The thermal stability was assessed through TGA and DSC. Furthermore, DOX was encapsulated into all PMs. The drug-loaded PMs exhibited enhanced drug release profiles in acidic medium. Particle diameter was measured through DLS and TEM techniques. The cell viability of diblock polymers and selected DOX-loaded PMs were evaluated against non-cancerous (L929) and cancerous cells (SK-N-AS), respectively, through well-known MTT assay. Micellar aggregates with mean diameters of approximately 127.2–145.3 nm formed in aqueous solution. The diameters of PMs increased to 141.5–173.1 nm upon the incorporation of DOX. The drug loading content and encapsulation efficiency of PMs were approximately 8.09–18.84% and 30.43–54.07%, respectively. The MTT assay results indicated that all synthesized materials had minimal effects on the viability of L929 cells, while DOX-loaded materials inhibited the viability of neuroblastoma cells by 68.7%. The highest drug release was 89.20% at pH 7.4, while 83.45% at pH 5.0 for 40 h. These findings suggest that the synthesized amphiphilic PMs are promising candidates for drug delivery systems.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04153-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we aim to synthesize self-assembled amphiphilic diblock poly(PEGA-b-HEA-PCL) copolymers through RAFT living polymerization, targeting the delivery of hydrophobic anticancer drugs. The synthesized self-assembled diblock copolymers polymeric micelles (PMs) comprising poly(ethylene glycol) methyl ether acrylate (PEGA), as a hydrophilic segment and 2-hydroxyethyl acrylate-polyhexanoate monomer (HEA-PCL) with different block lengths, as a hydrophobic segment. The chemical structures, compositions, and self-assembled behavior were identified through 1H NMR spectroscopy. The thermal stability was assessed through TGA and DSC. Furthermore, DOX was encapsulated into all PMs. The drug-loaded PMs exhibited enhanced drug release profiles in acidic medium. Particle diameter was measured through DLS and TEM techniques. The cell viability of diblock polymers and selected DOX-loaded PMs were evaluated against non-cancerous (L929) and cancerous cells (SK-N-AS), respectively, through well-known MTT assay. Micellar aggregates with mean diameters of approximately 127.2–145.3 nm formed in aqueous solution. The diameters of PMs increased to 141.5–173.1 nm upon the incorporation of DOX. The drug loading content and encapsulation efficiency of PMs were approximately 8.09–18.84% and 30.43–54.07%, respectively. The MTT assay results indicated that all synthesized materials had minimal effects on the viability of L929 cells, while DOX-loaded materials inhibited the viability of neuroblastoma cells by 68.7%. The highest drug release was 89.20% at pH 7.4, while 83.45% at pH 5.0 for 40 h. These findings suggest that the synthesized amphiphilic PMs are promising candidates for drug delivery systems.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.