Juel Sikder, Prosenjit Chakraborty, Utpol Kanti Das, Krity Dhar
{"title":"A hybrid approach for Bengali sentence validation","authors":"Juel Sikder, Prosenjit Chakraborty, Utpol Kanti Das, Krity Dhar","doi":"10.1007/s10462-024-10795-2","DOIUrl":null,"url":null,"abstract":"<div><p>Bengali is the official language of Bangladesh and is widely used in Bangladesh and West Bengal in India. Due to the growing accessibility of the internet and smart devices, the use of digital text material and documents in Bengali is growing with time. An automated Bengali Sentence Validation System is proposed in this study to effectively determine the correctness of sentences in such extensively available Bengali content. As far as we know, no substantial work has been done in the field of Bengali Sentence Validation utilizing deep learning approaches. Due to the lack of linguistic resources, sophisticated Natural Language Processing tools, and benchmark datasets, developing an automated Sentence Validation System for a limited-resource language like Bengali is challenging. Additionally, Bengali Sentences come in two morphological varieties (Sadhu-bhasha and Cholito-bhasha), making the validation process more challenging. The proposed automated Bengali Sentence Validation system contains the CNN-BiLSTM hybrid classifier model. As of now, there is no standard dataset for Bengali sentence validation. Due to the lack of a standard dataset, we collected Bengali sentences from different sources in Bangladesh and developed a Bengali Sentence Validation (BSV) Dataset with around 5000 labelled sentences arranged into two categories such as correct and incorrect. Experimental results demonstrate that the proposed system outperformed other classifier models and existing approaches for Bengali Sentence Validation and is able to categorize a wide range of Bengali sentences based on their correctness. The system’s F1 score for the Bengali Sentence Validation is 98%. </p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10795-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10795-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Bengali is the official language of Bangladesh and is widely used in Bangladesh and West Bengal in India. Due to the growing accessibility of the internet and smart devices, the use of digital text material and documents in Bengali is growing with time. An automated Bengali Sentence Validation System is proposed in this study to effectively determine the correctness of sentences in such extensively available Bengali content. As far as we know, no substantial work has been done in the field of Bengali Sentence Validation utilizing deep learning approaches. Due to the lack of linguistic resources, sophisticated Natural Language Processing tools, and benchmark datasets, developing an automated Sentence Validation System for a limited-resource language like Bengali is challenging. Additionally, Bengali Sentences come in two morphological varieties (Sadhu-bhasha and Cholito-bhasha), making the validation process more challenging. The proposed automated Bengali Sentence Validation system contains the CNN-BiLSTM hybrid classifier model. As of now, there is no standard dataset for Bengali sentence validation. Due to the lack of a standard dataset, we collected Bengali sentences from different sources in Bangladesh and developed a Bengali Sentence Validation (BSV) Dataset with around 5000 labelled sentences arranged into two categories such as correct and incorrect. Experimental results demonstrate that the proposed system outperformed other classifier models and existing approaches for Bengali Sentence Validation and is able to categorize a wide range of Bengali sentences based on their correctness. The system’s F1 score for the Bengali Sentence Validation is 98%.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.