L. D. Ivanova, Yu. V. Granatkina, I. Yu. Nikhezina, A. G. Malchev, D. S. Nikulin, M. Y. Shtern, A. R. Erofeeva
{"title":"Solid Solutions Based on Bismuth Telluride Doped with Graphene","authors":"L. D. Ivanova, Yu. V. Granatkina, I. Yu. Nikhezina, A. G. Malchev, D. S. Nikulin, M. Y. Shtern, A. R. Erofeeva","doi":"10.1134/S2075113324700849","DOIUrl":null,"url":null,"abstract":"<p>The microstructure and thermoelectric properties of materials based on <i>p</i>-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and <i>n</i>-type Bi<sub>2</sub>Te<sub>2.4</sub>Se<sub>0.6</sub> solid solutions doped with graphene are studied. The samples are obtained by spark plasma sintering of powders prepared by melt spinning and crushed in a ball mill together with graphene plates, which are introduced in an amount of 0.05, 0.1, and 0.15 wt %. Scanning electron microscopy is used to study the composition and microstructure. The samples with <i>p</i>-type conductivity have a fine-grained (on the order of hundreds of nanometers) structure with microsized tellurium-based eutectic inclusions. The samples with <i>n</i>-type conductivity contain grains with melted edges. The thermoelectric parameters are measured: Seebeck coefficient, electrical conductivity, thermal conductivity at room temperature and in the temperature range from 100 to 700 K; and the thermoelectric figure of merit is calculated. When adding 0.15 wt % of graphene plates to a <i>p</i>-type solid solution, the maximum thermoelectric figure of merit (<i>ZT</i>)<sub>max</sub> of the material increases by 13% and is equal to 1.3 at 420 K. For a sample with <i>n</i>-type conductivity doped with graphene, the highest value of (<i>ZT</i>)<sub>max</sub> = 0.83 at 470 K is obtained by adding 0.1 wt % of graphene plates.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1240 - 1248"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure and thermoelectric properties of materials based on p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.4Se0.6 solid solutions doped with graphene are studied. The samples are obtained by spark plasma sintering of powders prepared by melt spinning and crushed in a ball mill together with graphene plates, which are introduced in an amount of 0.05, 0.1, and 0.15 wt %. Scanning electron microscopy is used to study the composition and microstructure. The samples with p-type conductivity have a fine-grained (on the order of hundreds of nanometers) structure with microsized tellurium-based eutectic inclusions. The samples with n-type conductivity contain grains with melted edges. The thermoelectric parameters are measured: Seebeck coefficient, electrical conductivity, thermal conductivity at room temperature and in the temperature range from 100 to 700 K; and the thermoelectric figure of merit is calculated. When adding 0.15 wt % of graphene plates to a p-type solid solution, the maximum thermoelectric figure of merit (ZT)max of the material increases by 13% and is equal to 1.3 at 420 K. For a sample with n-type conductivity doped with graphene, the highest value of (ZT)max = 0.83 at 470 K is obtained by adding 0.1 wt % of graphene plates.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.