N. A. Chapaksov, T. P. Dyachkova, N. R. Memetov, A. E. Memetova, R. A. Stolyarov, V. S. Yagubov, Yu. A. Khan
{"title":"Influence of Modification with Iodine and Thermal Posttreatment on the Structure and Electrical Conductivity of Graphene Oxide","authors":"N. A. Chapaksov, T. P. Dyachkova, N. R. Memetov, A. E. Memetova, R. A. Stolyarov, V. S. Yagubov, Yu. A. Khan","doi":"10.1134/S2075113324701077","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—An original technique for modifying graphene oxide with iodine has been developed. It is shown that, when graphene oxide is treated with iodine, oxygen-containing groups are removed from the surface of graphene planes, which improves the electrically conductive properties of the material. The change in the structure and electrical conductivity of the modified graphene oxide, depending on the concentration of iodine, has been studied. According to Raman spectroscopy data, it can be seen that the composition of the modified materials includes molecular complexes of iodine <span>\\({\\text{I}}_{3}^{ - }\\)</span> and <span>\\({\\text{I}}_{5}^{ - }\\)</span>. Changes in the structure of the crystal lattice of iodine-modified graphene oxide films were studied using X-ray diffraction analysis. According to IR spectroscopy, the effect of iodination on the change in the qualitative composition of functional groups in the material was analyzed. The specific electrical conductivity of graphene oxide as a result of modification increases from 9.6 × 10<sup>–10</sup> S/cm for the original material to 3.3 × 10<sup>–7</sup> S/cm for the material treated with an isopropanol solution containing 1 wt % I<sub>2</sub> relative to dry graphene oxide. The additionally modified films were heat treated at 80°C for 2 h. The resulting changes in the structure of the material are analyzed and an increase in electrical conductivity by one or two orders of magnitude is shown.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1414 - 1420"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324701077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—An original technique for modifying graphene oxide with iodine has been developed. It is shown that, when graphene oxide is treated with iodine, oxygen-containing groups are removed from the surface of graphene planes, which improves the electrically conductive properties of the material. The change in the structure and electrical conductivity of the modified graphene oxide, depending on the concentration of iodine, has been studied. According to Raman spectroscopy data, it can be seen that the composition of the modified materials includes molecular complexes of iodine \({\text{I}}_{3}^{ - }\) and \({\text{I}}_{5}^{ - }\). Changes in the structure of the crystal lattice of iodine-modified graphene oxide films were studied using X-ray diffraction analysis. According to IR spectroscopy, the effect of iodination on the change in the qualitative composition of functional groups in the material was analyzed. The specific electrical conductivity of graphene oxide as a result of modification increases from 9.6 × 10–10 S/cm for the original material to 3.3 × 10–7 S/cm for the material treated with an isopropanol solution containing 1 wt % I2 relative to dry graphene oxide. The additionally modified films were heat treated at 80°C for 2 h. The resulting changes in the structure of the material are analyzed and an increase in electrical conductivity by one or two orders of magnitude is shown.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.