Investigation on impedance spectroscopy and transport properties of co-doped bismuth ferrite ceramics

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Bulletin of Materials Science Pub Date : 2024-10-10 DOI:10.1007/s12034-024-03246-9
H Hemanta Singh, H Basantakumar Sharma
{"title":"Investigation on impedance spectroscopy and transport properties of co-doped bismuth ferrite ceramics","authors":"H Hemanta Singh,&nbsp;H Basantakumar Sharma","doi":"10.1007/s12034-024-03246-9","DOIUrl":null,"url":null,"abstract":"<div><p>Yttrium (Y) and cobalt (Co) co-doped bismuth ferrite (BFO) nanopowders were synthesized by the sol–gel method. The purity of the phase of the samples was confirmed by the X-ray diffraction technique. Both grains and grain boundaries contribute to the electrical response of the samples. The modulus studies show that the charge carriers can perform both long- and short-range mobility. Meanwhile, the Nyquist plot analysis confirms the samples’ non-Debye-type relaxation behaviour and negative temperature coefficient resistance nature. The frequency-dependent AC conductivity obeys the power law <span>\\(A\\omega^{s}\\)</span> at a higher frequency. AC conductivity increases from 1.300 × 10<sup>–5</sup> to 8.463 × 10<sup>–4</sup> S m<sup>–1</sup>, increasing Y and Co contents in the BFO sample. The temperature dependence of the AC conductivity suggests the presence of different conduction processes for all the samples.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03246-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Yttrium (Y) and cobalt (Co) co-doped bismuth ferrite (BFO) nanopowders were synthesized by the sol–gel method. The purity of the phase of the samples was confirmed by the X-ray diffraction technique. Both grains and grain boundaries contribute to the electrical response of the samples. The modulus studies show that the charge carriers can perform both long- and short-range mobility. Meanwhile, the Nyquist plot analysis confirms the samples’ non-Debye-type relaxation behaviour and negative temperature coefficient resistance nature. The frequency-dependent AC conductivity obeys the power law \(A\omega^{s}\) at a higher frequency. AC conductivity increases from 1.300 × 10–5 to 8.463 × 10–4 S m–1, increasing Y and Co contents in the BFO sample. The temperature dependence of the AC conductivity suggests the presence of different conduction processes for all the samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共掺杂铁氧体铋陶瓷的阻抗光谱和传输特性研究
采用溶胶-凝胶法合成了钇(Y)和钴(Co)共掺杂的铋铁氧体(BFO)纳米粉体。通过 X 射线衍射技术确认了样品相的纯度。晶粒和晶界都对样品的电响应做出了贡献。模量研究表明,电荷载流子既能进行长程迁移,也能进行短程迁移。同时,奈奎斯特图分析证实了样品的非戴贝型弛豫行为和负温度系数电阻特性。与频率相关的交流电导率在较高频率下服从幂律 \(A\omega^{s}\)。随着 BFO 样品中 Y 和 Co 含量的增加,交流电导率从 1.300 × 10-5 增加到 8.463 × 10-4 S m-1。交流电导率的温度依赖性表明所有样品都存在不同的传导过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
期刊最新文献
Microwave-assisted synthesis of graphene oxide–cobalt ferrite magnetic nanocomposite for water remediation Effect of Silene vulgaris callus pectin on physicochemical properties of composite hydrogel beads based on pectin and sodium metasilicate Impact of magnesium hydroxide particles decorated Kenaf fibre on the physico-mechanical properties of polypropylene-based composites Structure and properties of RE2HE2O7 thermal barrier ceramics designed with high-entropy at different sites Production of biodegradable packaging film based on PLA/starch: optimization via response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1