The role of γ/γ interfacial spacing on the tensile behavior in lamellar TiAl alloy via molecular dynamics simulations

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2024-09-12 DOI:10.1007/s10409-024-24030-x
Xiong Zhou  (, ), Shiping Wang  (, ), Zhongtao Lu  (, ), Xiege Huang  (, ), Xiaobin Feng  (, ), Jiayi Fu  (, ), Wenjuan Li  (, ), Pengcheng Zhai  (, ), Guodong Li  (, )
{"title":"The role of γ/γ interfacial spacing on the tensile behavior in lamellar TiAl alloy via molecular dynamics simulations","authors":"Xiong Zhou \n (,&nbsp;),&nbsp;Shiping Wang \n (,&nbsp;),&nbsp;Zhongtao Lu \n (,&nbsp;),&nbsp;Xiege Huang \n (,&nbsp;),&nbsp;Xiaobin Feng \n (,&nbsp;),&nbsp;Jiayi Fu \n (,&nbsp;),&nbsp;Wenjuan Li \n (,&nbsp;),&nbsp;Pengcheng Zhai \n (,&nbsp;),&nbsp;Guodong Li \n (,&nbsp;)","doi":"10.1007/s10409-024-24030-x","DOIUrl":null,"url":null,"abstract":"<div><p>The lamellar microstructure is one of the most typical microstructures of TiAl alloys. There are three γ/γ interfaces with different microstructures in lamellar γ-TiAl alloys. In this work, we investigated the deformation processes of lamellar γ-TiAl alloys with different interfacial spacing (λ) via uniaxial tensile loading using molecular dynamics simulations, including true twin (TT), pseudo-twin (PT), rotational boundary (RB), and the mixed structure (TT ∥ PT ∥ RB). The results show that in all lamellar <i>γ</i>-TiAl samples, the Shockley partial dislocation prefers to nucleate in the region between two neighboring interfaces. Then, dislocations move towards, crossing the γ/γ interface. Finally, the dislocation slippage leads to the destruction of the interface, resulting in cracks and structural failure. With the decrease of λ, the ultimate strength slightly increases in the TT or PT structure of γ-TiAl, which follows the Hall-Petch relation. But in general, the interfacial spacing has a slight effect on the ultimate strengths of these four structures of γ-TiAl.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24030-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lamellar microstructure is one of the most typical microstructures of TiAl alloys. There are three γ/γ interfaces with different microstructures in lamellar γ-TiAl alloys. In this work, we investigated the deformation processes of lamellar γ-TiAl alloys with different interfacial spacing (λ) via uniaxial tensile loading using molecular dynamics simulations, including true twin (TT), pseudo-twin (PT), rotational boundary (RB), and the mixed structure (TT ∥ PT ∥ RB). The results show that in all lamellar γ-TiAl samples, the Shockley partial dislocation prefers to nucleate in the region between two neighboring interfaces. Then, dislocations move towards, crossing the γ/γ interface. Finally, the dislocation slippage leads to the destruction of the interface, resulting in cracks and structural failure. With the decrease of λ, the ultimate strength slightly increases in the TT or PT structure of γ-TiAl, which follows the Hall-Petch relation. But in general, the interfacial spacing has a slight effect on the ultimate strengths of these four structures of γ-TiAl.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分子动力学模拟研究γ/γ界面间距对片状钛铝合金拉伸行为的影响
片状微结构是钛铝合金最典型的微结构之一。在片状γ-TiAl合金中存在三种不同微观结构的γ/γ界面。在这项工作中,我们利用分子动力学模拟研究了不同界面间距(λ)的片状γ-TiAl合金在单轴拉伸载荷下的变形过程,包括真孪晶(TT)、伪孪晶(PT)、旋转边界(RB)和混合结构(TT ∥ PT ∥ RB)。结果表明,在所有片状γ-钛铝样品中,肖克利偏位错都倾向于在两个相邻界面之间的区域成核。然后,位错向γ/γ界面移动并穿过该界面。最后,位错滑动导致界面破坏,从而产生裂缝和结构破坏。随着λ的减小,γ-TiAl的TT或PT结构的极限强度略有增加,这符合霍尔-佩奇关系。但总的来说,界面间距对这四种γ-TiAl 结构的极限强度影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock Voids and cracks detection in bulk superconductors through magnetic field and displacement signals Introducing and analyzing a periodic pipe-in-pipe model for broadband ultra-low-frequency vibration reduction in fluid-conveying pipes Radiation investigation behind 4.7 km/s shock waves with nitrogen using a square section shock tube The impacts of variable nonlocal, length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1