Prediction of Rheological Parameters of Polymers Using the CatBoost Gradient Boosting Algorithm

IF 0.58 Q4 Materials Science Polymer Science, Series D Pub Date : 2024-06-14 DOI:10.1134/S199542122370020X
A. S. Chepurnenko, T. N. Kondratieva, T. R. Deberdeev, V. F. Akopyan, A. A. Avakov, V. S. Chepurnenko
{"title":"Prediction of Rheological Parameters of Polymers Using the CatBoost Gradient Boosting Algorithm","authors":"A. S. Chepurnenko,&nbsp;T. N. Kondratieva,&nbsp;T. R. Deberdeev,&nbsp;V. F. Akopyan,&nbsp;A. A. Avakov,&nbsp;V. S. Chepurnenko","doi":"10.1134/S199542122370020X","DOIUrl":null,"url":null,"abstract":"<p>The article discusses the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the nonlinear Maxwell–Gurevich equation. Comparisons are made with other methods, including the classical algorithm, nonlinear optimization methods, and artificial neural networks.</p>","PeriodicalId":741,"journal":{"name":"Polymer Science, Series D","volume":"17 1","pages":"121 - 128"},"PeriodicalIF":0.5800,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series D","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S199542122370020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the nonlinear Maxwell–Gurevich equation. Comparisons are made with other methods, including the classical algorithm, nonlinear optimization methods, and artificial neural networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 CatBoost 梯度提升算法预测聚合物流变参数
文章讨论了利用 CatBoost 机器学习算法从应力松弛曲线确定聚合物流变参数的问题。该模型是在使用非线性 Maxwell-Gurevich 方程构建的理论曲线上进行训练的。该模型与其他方法进行了比较,包括经典算法、非线性优化方法和人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series D
Polymer Science, Series D Materials Science-Polymers and Plastics
CiteScore
0.80
自引率
0.00%
发文量
87
期刊介绍: Polymer Science, Series D  publishes useful description of engineering developments that are related to the preparation and application of glues, compounds, sealing materials, and binding agents, articles on the adhesion theory, prediction of the strength of adhesive joints, methods for the control of their properties, synthesis, and methods of structural modeling of glued joints and constructions, original articles with new scientific results, analytical reviews of the modern state in the field.
期刊最新文献
Studying the Properties of Paint-and-Varnish Materials Application of Ultrasonic Vibrations in the Course of Gluing The Influence of Hydrocarbon Resins on the Properties of Polyisobutylene-Based Hot-Melt Adhesives Welding of Parts Made of Polymer Composite Materials Based on Thermoplastics. Part 3. Methods for Welding Parts Made of Polymer Composite Materials Based on Thermoplastics with the Conversion of Various Types of Energy Studies on the Climatic Resistance of Thiokol and Siloxane Sealant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1