{"title":"Upper Bound for the Competitive Facility Location Problem with Demand Uncertainty","authors":"V. L. Beresnev, A. A. Melnikov","doi":"10.1134/S1064562423600318","DOIUrl":null,"url":null,"abstract":"<p>We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenarios. The problem of finding the best solutions for the parties is formulated as a discrete bilevel mathematical programming problem. A procedure for computing an upper bound for the objective function on solution subsets is suggested. The procedure could be employed in implicit enumeration schemes capable of computing an optimal solution for the problem under study. Within the procedure, additional constraints (cuts) iteratively augment the high-point relaxation of the initial bilevel problem, which strengthens the relaxation and improves the upper bound’s quality. A new procedure for generating such cuts is proposed, which allows us to construct the strongest cuts without enumerating the parameters encoding them.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"438 - 442"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423600318","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenarios. The problem of finding the best solutions for the parties is formulated as a discrete bilevel mathematical programming problem. A procedure for computing an upper bound for the objective function on solution subsets is suggested. The procedure could be employed in implicit enumeration schemes capable of computing an optimal solution for the problem under study. Within the procedure, additional constraints (cuts) iteratively augment the high-point relaxation of the initial bilevel problem, which strengthens the relaxation and improves the upper bound’s quality. A new procedure for generating such cuts is proposed, which allows us to construct the strongest cuts without enumerating the parameters encoding them.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.