{"title":"Impact of Glow Discharge Energy Characteristics on Gas Temperature","authors":"R. F. Yunusov, Z. D. Zakirov, E. R. Yunusova","doi":"10.1134/S106377882310040X","DOIUrl":null,"url":null,"abstract":"<p>The paper examines experimentally the dependence of gas temperature in a glow discharge on gas-dynamic flow parameters and discharge energy parameters. The gas pressure <i>P</i> and its flow rate <i>G</i> in the discharge chamber varied from 2.5 to 5.5 kPa and from 0 to 0.035 g/s, respectively. The discharge current strength <i>I</i> and the power input <i>N</i> to the discharge also ranged from 30 to 80 mA and from 30 to 80 W. The gas temperature was measured by the thermocouple method at six points of the discharge gap, which also made it possible to estimate the change in gas temperature along the axis of the cylindrical channel and along its radius. At low gas consumption, the discharge was found to be axisymmetric and fill the entire volume of the discharge gap. As the current and discharge power increased, the gas temperature increased approximately linearly with an average rate of 5 K/W. With increasing air flow rate <i>G</i> from 0.017 to 0.035 g/s, the discharge rearranged from a bulk shape to a cord shape, and the temperature field of the discharge changed significantly: in the center of the discharge, the temperature decreased sharply and practically did not change with increasing discharge power, while near the discharge localization, the gas temperature increased linearly with increasing power at an average rate of 3 K/W.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"86 12","pages":"2751 - 2753"},"PeriodicalIF":0.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377882310040X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The paper examines experimentally the dependence of gas temperature in a glow discharge on gas-dynamic flow parameters and discharge energy parameters. The gas pressure P and its flow rate G in the discharge chamber varied from 2.5 to 5.5 kPa and from 0 to 0.035 g/s, respectively. The discharge current strength I and the power input N to the discharge also ranged from 30 to 80 mA and from 30 to 80 W. The gas temperature was measured by the thermocouple method at six points of the discharge gap, which also made it possible to estimate the change in gas temperature along the axis of the cylindrical channel and along its radius. At low gas consumption, the discharge was found to be axisymmetric and fill the entire volume of the discharge gap. As the current and discharge power increased, the gas temperature increased approximately linearly with an average rate of 5 K/W. With increasing air flow rate G from 0.017 to 0.035 g/s, the discharge rearranged from a bulk shape to a cord shape, and the temperature field of the discharge changed significantly: in the center of the discharge, the temperature decreased sharply and practically did not change with increasing discharge power, while near the discharge localization, the gas temperature increased linearly with increasing power at an average rate of 3 K/W.
期刊介绍:
Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.