K. M. Gopalakrishnan, R. Mohanraj, S. Southamirajan, S. Ramkumar
{"title":"Characterization of Euphorbia Tortilis Cactus Concrete Specimen by 3D X-ray Tomography","authors":"K. M. Gopalakrishnan, R. Mohanraj, S. Southamirajan, S. Ramkumar","doi":"10.1134/S1061830924601892","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the enhancement of Euphorbia Tortilis Cactus (ETC) infused concrete, focusing on its microstructural characteristics and mechanical properties. ETC concrete, known for superior tensile ductility and durability, was characterized using advanced 3D X-ray tomography and energy dispersive X-ray spectroscopy (EDX) analysis. Specimens with a 9% ETC extract mix underwent high-resolution Micro Computed Tomography scanning, revealing an average porosity of 3.3% and providing detailed insights into internal features like pores, fibers, and aggregates. EDX mapping identified key elements, including Si, O, Mg, and Ca, highlighting calcium carbonate and brucite formations. This research addresses gaps in understanding ETC concrete’s microstructure and mechanical behavior, using non-destructive imaging and chemical analysis to offer comprehensive insights. The findings suggest that ETC concrete can be optimized for enhanced performance in sustainable construction, highlighting its potential for applications requiring high durability and ductility. The study’s novelty lies in its application of advanced imaging and analysis techniques to optimize ETC concrete mix designs, assess durability, and develop strategies for mitigating structural issues, thus providing valuable insights into the material’s properties and behavior.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 6","pages":"692 - 698"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924601892","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the enhancement of Euphorbia Tortilis Cactus (ETC) infused concrete, focusing on its microstructural characteristics and mechanical properties. ETC concrete, known for superior tensile ductility and durability, was characterized using advanced 3D X-ray tomography and energy dispersive X-ray spectroscopy (EDX) analysis. Specimens with a 9% ETC extract mix underwent high-resolution Micro Computed Tomography scanning, revealing an average porosity of 3.3% and providing detailed insights into internal features like pores, fibers, and aggregates. EDX mapping identified key elements, including Si, O, Mg, and Ca, highlighting calcium carbonate and brucite formations. This research addresses gaps in understanding ETC concrete’s microstructure and mechanical behavior, using non-destructive imaging and chemical analysis to offer comprehensive insights. The findings suggest that ETC concrete can be optimized for enhanced performance in sustainable construction, highlighting its potential for applications requiring high durability and ductility. The study’s novelty lies in its application of advanced imaging and analysis techniques to optimize ETC concrete mix designs, assess durability, and develop strategies for mitigating structural issues, thus providing valuable insights into the material’s properties and behavior.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).