Neural Network Approach to the Problem of Predicting Interest Rate Anomalies under the Influence of Correlated Noise

Pub Date : 2024-03-25 DOI:10.1134/S1064562423701521
G. A. Zotov, P. P. Lukianchenko
{"title":"Neural Network Approach to the Problem of Predicting Interest Rate Anomalies under the Influence of Correlated Noise","authors":"G. A. Zotov,&nbsp;P. P. Lukianchenko","doi":"10.1134/S1064562423701521","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study is to analyze bifurcation points in financial models using colored noise as a stochastic component. The research investigates the impact of colored noise on change-points and approach to their detection via neural networks. The paper presents a literature review on the use of colored noise in complex systems. The Vasicek stochastic model of interest rates is the object of the research. The research methodology involves approximating numerical solutions of the model using the Euler–Maruyama method, calibrating model parameters, and adjusting the integration step. Methods for detecting bifurcation points and their application to the data are discussed. The study results include the outcomes of an LSTM model trained to detect change-points for models with different types of noise. Results are provided for comparison with various change-point windows and forecast step sizes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to analyze bifurcation points in financial models using colored noise as a stochastic component. The research investigates the impact of colored noise on change-points and approach to their detection via neural networks. The paper presents a literature review on the use of colored noise in complex systems. The Vasicek stochastic model of interest rates is the object of the research. The research methodology involves approximating numerical solutions of the model using the Euler–Maruyama method, calibrating model parameters, and adjusting the integration step. Methods for detecting bifurcation points and their application to the data are discussed. The study results include the outcomes of an LSTM model trained to detect change-points for models with different types of noise. Results are provided for comparison with various change-point windows and forecast step sizes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
预测相关噪声影响下利率异常问题的神经网络方法
本研究旨在利用彩色噪声作为随机成分,分析金融模型中的分叉点。研究探讨了彩色噪声对变化点的影响以及通过神经网络检测变化点的方法。论文对复杂系统中彩色噪声的使用进行了文献综述。研究对象是 Vasicek 利率随机模型。研究方法包括使用 Euler-Maruyama 方法逼近模型的数值解、校准模型参数和调整积分步骤。讨论了检测分叉点的方法及其在数据中的应用。研究结果包括经过训练的 LSTM 模型的结果,该模型可检测具有不同类型噪声的模型的变化点。还提供了与各种变化点窗口和预测步长进行比较的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1