A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-09-25 DOI:10.1134/S1023193524700319
O. I. Istakova, D. V. Konev, D. O. Tolstel, E. A. Ruban, M. S. Krasikova, M. A. Vorotyntsev
{"title":"A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery","authors":"O. I. Istakova,&nbsp;D. V. Konev,&nbsp;D. O. Tolstel,&nbsp;E. A. Ruban,&nbsp;M. S. Krasikova,&nbsp;M. A. Vorotyntsev","doi":"10.1134/S1023193524700319","DOIUrl":null,"url":null,"abstract":"<p>Hybrid flow chemical power source (Pt–C)H<sub>2</sub>|Nafion|VO<sub>2</sub><sup>+</sup>(C) in which the membrane–electrode assembly combines gas-diffusion anode of hydrogen–air fuel cell and cathode of vanadium redox flow battery is studied. Concept of such a hydrogen–vanadium flow battery had been proposed earlier (2013) as an alternative to the vanadium redox flow battery, also designed for large-scale electrical energy storage but its practical implementation has so far been limited to single cells having the active area within several tens of cm<sup>2</sup>. The goal of this work is the establishing of the factors limiting the discharge power density of such hybrid. hydrogen–vanadium flow battery cells which is inferior to both hydrogen–air fuel cell and vanadium redox flow batteries, even though the hydrogen–vanadium flow battery cell represents a combination of their more reversible half-cells. The object of the study is a cell with a 2 × 2 cm membrane–electrode assembly equipped with Luggin capillary on the vanadium electrolyte side. Measurements of the current–voltage characteristics of the entire cell, as well as the polarization characteristics of its half-cells, are performed using a six-electrode scheme of the cell connection with varied vanadium electrolyte circulation rate and different cathode materials (carbon felts, 4.6 or 2.5 mm thick, as well as carbon paper). The contribution of the hydrogen gas diffusion electrode to the total dc resistance of the hydrogen–vanadium flow battery cell is shown being twice that of the flow-through vanadium cathode. A record high discharge power density has been achieved: 0.75 W cm<sup>–2</sup>, for the cell based on the commercially available material, Sigracell GFD 2.5 EA-TA carbon felt as the cathode material, without its special surface modification.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"716 - 727"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid flow chemical power source (Pt–C)H2|Nafion|VO2+(C) in which the membrane–electrode assembly combines gas-diffusion anode of hydrogen–air fuel cell and cathode of vanadium redox flow battery is studied. Concept of such a hydrogen–vanadium flow battery had been proposed earlier (2013) as an alternative to the vanadium redox flow battery, also designed for large-scale electrical energy storage but its practical implementation has so far been limited to single cells having the active area within several tens of cm2. The goal of this work is the establishing of the factors limiting the discharge power density of such hybrid. hydrogen–vanadium flow battery cells which is inferior to both hydrogen–air fuel cell and vanadium redox flow batteries, even though the hydrogen–vanadium flow battery cell represents a combination of their more reversible half-cells. The object of the study is a cell with a 2 × 2 cm membrane–electrode assembly equipped with Luggin capillary on the vanadium electrolyte side. Measurements of the current–voltage characteristics of the entire cell, as well as the polarization characteristics of its half-cells, are performed using a six-electrode scheme of the cell connection with varied vanadium electrolyte circulation rate and different cathode materials (carbon felts, 4.6 or 2.5 mm thick, as well as carbon paper). The contribution of the hydrogen gas diffusion electrode to the total dc resistance of the hydrogen–vanadium flow battery cell is shown being twice that of the flow-through vanadium cathode. A record high discharge power density has been achieved: 0.75 W cm–2, for the cell based on the commercially available material, Sigracell GFD 2.5 EA-TA carbon felt as the cathode material, without its special surface modification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高放电功率密度单体氢钒液流电池
研究了(Pt-C)H2|Nafion|VO2+(C)混合液流化学电源,其中的膜电极组件结合了氢气-空气燃料电池的气体扩散阳极和钒氧化还原液流电池的阴极。这种氢钒液流电池的概念早在(2013 年)之前就已提出,作为钒氧化还原液流电池的替代品,也是为大规模电能存储而设计的。虽然氢钒液流电池是氢气-空气燃料电池和钒氧化还原液流电池的可逆半电池的组合,但这种电池的放电功率密度不如氢气-空气燃料电池和钒氧化还原液流电池。研究对象是一个在钒电解质一侧装有鲁金毛细管的 2 × 2 厘米膜电极组件的电池。采用六电极电池连接方案,改变钒电解液的循环速率和不同的阴极材料(4.6 或 2.5 毫米厚的碳毡以及碳纸),测量整个电池的电流电压特性及其半电池的极化特性。氢气扩散电极对氢钒液流电池总直流电阻的贡献是直流钒阴极的两倍。放电功率密度达到了创纪录的高水平:采用市售材料 Sigracell GFD 2.5 EA-TA 碳毡作为阴极材料的电池,在未进行特殊表面改性的情况下,放电功率密度达到了 0.75 W cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Role of Nonlocal Electrostatic Effects in the Stabilization of Monovalent Cations in an Aqueous Cavity Surrounded by a Weakly Polar Environment Electrodeposited Composite of Poly-3,4-ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range Dimethylglyoximate Derived Nickel Oxide Nanowires for Trace Level Amperometric Detection of Hydroquinone Research Progress of Cobalt Based Phosphide Anode Materials for Sodium-Ion Batteries Electric Double Layer Capacitors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1