A Texture Removal Method for Surface Defect Detection in Machining

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-09-25 DOI:10.1007/s10921-024-01124-2
Xiaofeng Yu, Zhengminqing Li, Letian Li, Wei Sheng
{"title":"A Texture Removal Method for Surface Defect Detection in Machining","authors":"Xiaofeng Yu,&nbsp;Zhengminqing Li,&nbsp;Letian Li,&nbsp;Wei Sheng","doi":"10.1007/s10921-024-01124-2","DOIUrl":null,"url":null,"abstract":"<div><p>Surface defect detection in mechanical processing mainly adopts manual inspection, which has certain issues including strong dependence on manual experience, low efficiency, and difficulty in online detection. A surface texture elimination method based on improved frequency domain filtering in conjunction with morphological sub-pixel edge detection is put forward in order to address the aforementioned issues with machining surface defects. Firstly, ascertain whether textures exist in the image and determine their feature values using the grayscale co-occurrence matrix. The main energy direction of the textured surface in the frequency domain was then obtained by applying the Fourier transform to the processed surface. An elliptical domain narrow stopband was designed to reduce the energy in the band region corresponding to the processed surface texture and eliminate the processed surface texture. Finally, improve morphology and sub-pixel edge fusion to extract surface defect images. Cracks and scratches have a detectable width of 0.01 mm, a detection accuracy of 97.667%, and a detection time of 0.02 s. Therefore, the combination of machine vision and texture removal technology has achieved the detection of surface scratches and cracks in machining, providing a theoretical basis for defect detection in workpiece processing.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01124-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Surface defect detection in mechanical processing mainly adopts manual inspection, which has certain issues including strong dependence on manual experience, low efficiency, and difficulty in online detection. A surface texture elimination method based on improved frequency domain filtering in conjunction with morphological sub-pixel edge detection is put forward in order to address the aforementioned issues with machining surface defects. Firstly, ascertain whether textures exist in the image and determine their feature values using the grayscale co-occurrence matrix. The main energy direction of the textured surface in the frequency domain was then obtained by applying the Fourier transform to the processed surface. An elliptical domain narrow stopband was designed to reduce the energy in the band region corresponding to the processed surface texture and eliminate the processed surface texture. Finally, improve morphology and sub-pixel edge fusion to extract surface defect images. Cracks and scratches have a detectable width of 0.01 mm, a detection accuracy of 97.667%, and a detection time of 0.02 s. Therefore, the combination of machine vision and texture removal technology has achieved the detection of surface scratches and cracks in machining, providing a theoretical basis for defect detection in workpiece processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械加工中表面缺陷检测的纹理去除方法
机械加工中的表面缺陷检测主要采用人工检测,存在对人工经验依赖性强、效率低、在线检测困难等问题。针对机械加工表面缺陷存在的上述问题,提出了一种基于改进的频域滤波结合形态学子像素边缘检测的表面纹理消除方法。首先,确定图像中是否存在纹理,并利用灰度共现矩阵确定其特征值。然后,通过对处理后的表面进行傅里叶变换,获得纹理表面在频域中的主能量方向。设计了一个椭圆域窄阻带,以降低处理后表面纹理对应的频带区域的能量,消除处理后的表面纹理。最后,改进形态学和子像素边缘融合,提取表面缺陷图像。裂纹和划痕的检测宽度为 0.01 mm,检测精度为 97.667%,检测时间为 0.02 s。因此,机器视觉与纹理去除技术的结合实现了对机械加工中表面划痕和裂纹的检测,为工件加工中的缺陷检测提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load Instance Segmentation XXL-CT Challenge of a Historic Airplane Publisher Correction: Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery Acoustic Emission Signal Feature Extraction for Bearing Faults Using ACF and GMOMEDA Modeling and Analysis of Ellipticity Dispersion Characteristics of Lamb Waves in Pre-stressed Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1