{"title":"Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products","authors":"Anilatmaja Aryasomayajula, Arijit Mukherjee","doi":"10.1007/s10455-024-09967-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> denote a noncompact finite volume hyperbolic Riemann surface of genus <span>\\(g\\ge 2\\)</span>, with only one puncture at <span>\\(i\\infty \\)</span> (identifying <i>X</i> with its universal cover <span>\\({\\mathbb {H}}\\)</span>). Let <span>\\({{{\\overline{X}}}}:=X\\cup \\lbrace i\\infty \\rbrace \\)</span> denote the Satake compactification of <i>X</i>. Let <span>\\(\\Omega _{{{{\\overline{X}}}}}\\)</span> denote the cotangent bundle on <span>\\({{{\\overline{X}}}}\\)</span>. For <span>\\(k\\gg 1\\)</span>, we derive an estimate for <span>\\(\\mu _{{ {\\overline{X}}}}^{\\textrm{Ber},{{k}}}\\)</span>, the Bergman metric associated to the line bundle <span>\\({{\\mathcal {L}}}^{k}:=\\Omega _{{{{\\overline{X}}}}}^{\\otimes {{k}}}\\otimes {{\\mathcal {O}}}_{{{{\\overline{X}}}}}((k-1)i\\infty )\\)</span>. For a given <span>\\(d\\ge 1\\)</span>, the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}})}^{\\textrm{FS},k}\\)</span>, defines a Kähler metric on <span>\\(\\textrm{Sym}^{{d}}({{\\overline{X}}})\\)</span>, the <i>d</i>-fold symmetric product of <span>\\({{{\\overline{X}}}}\\)</span>. Using our estimates of <span>\\(\\mu _{{ {\\overline{X}}}}^{\\textrm{Ber},{{k}}}\\)</span>, as an application, we derive an estimate for <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}}),\\textrm{vol}}^{\\textrm{FS},k}\\)</span>, the volume form associated to the (1,1)-form <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}})}^{\\textrm{FS},k}\\)</span>.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"66 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09967-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X denote a noncompact finite volume hyperbolic Riemann surface of genus \(g\ge 2\), with only one puncture at \(i\infty \) (identifying X with its universal cover \({\mathbb {H}}\)). Let \({{{\overline{X}}}}:=X\cup \lbrace i\infty \rbrace \) denote the Satake compactification of X. Let \(\Omega _{{{{\overline{X}}}}}\) denote the cotangent bundle on \({{{\overline{X}}}}\). For \(k\gg 1\), we derive an estimate for \(\mu _{{ {\overline{X}}}}^{\textrm{Ber},{{k}}}\), the Bergman metric associated to the line bundle \({{\mathcal {L}}}^{k}:=\Omega _{{{{\overline{X}}}}}^{\otimes {{k}}}\otimes {{\mathcal {O}}}_{{{{\overline{X}}}}}((k-1)i\infty )\). For a given \(d\ge 1\), the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}})}^{\textrm{FS},k}\), defines a Kähler metric on \(\textrm{Sym}^{{d}}({{\overline{X}}})\), the d-fold symmetric product of \({{{\overline{X}}}}\). Using our estimates of \(\mu _{{ {\overline{X}}}}^{\textrm{Ber},{{k}}}\), as an application, we derive an estimate for \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}}),\textrm{vol}}^{\textrm{FS},k}\), the volume form associated to the (1,1)-form \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}})}^{\textrm{FS},k}\).
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.