uSF: Learning Neural Semantic Field with Uncertainty

V. S. Skorokhodov, D. M. Drozdova, D. A. Yudin
{"title":"uSF: Learning Neural Semantic Field with Uncertainty","authors":"V. S. Skorokhodov,&nbsp;D. M. Drozdova,&nbsp;D. A. Yudin","doi":"10.3103/S1060992X24700176","DOIUrl":null,"url":null,"abstract":"<p>Recently, there has been an increased interest in NeRF methods which reconstruct differentiable representation of three-dimensional scenes. One of the main limitations of such methods is their inability to assess the confidence of the model in its predictions. In this paper, we propose a new neural network model for the formation of extended vector representations, called uSF, which allows the model to predict not only color and semantic label of each point, but also estimate the corresponding values of uncertainty. We show that with a small number of images available for training, a model that quantifies uncertainty performs better than a model without such functionality. Code of the uSF approach is publicly available at https://github.com/sevashasla/usf/.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3","pages":"276 - 285"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been an increased interest in NeRF methods which reconstruct differentiable representation of three-dimensional scenes. One of the main limitations of such methods is their inability to assess the confidence of the model in its predictions. In this paper, we propose a new neural network model for the formation of extended vector representations, called uSF, which allows the model to predict not only color and semantic label of each point, but also estimate the corresponding values of uncertainty. We show that with a small number of images available for training, a model that quantifies uncertainty performs better than a model without such functionality. Code of the uSF approach is publicly available at https://github.com/sevashasla/usf/.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
uSF:学习具有不确定性的神经语义场
最近,人们对重建三维场景可微分表示的 NeRF 方法越来越感兴趣。这类方法的主要局限之一是无法评估模型预测的置信度。在本文中,我们提出了一种用于形成扩展矢量表示的新神经网络模型,称为 uSF,该模型不仅能预测每个点的颜色和语义标签,还能估计相应的不确定值。我们的研究表明,在只有少量图像可用于训练的情况下,量化不确定性的模型比没有这种功能的模型表现更好。uSF 方法的代码可在 https://github.com/sevashasla/usf/ 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
期刊最新文献
uSF: Learning Neural Semantic Field with Uncertainty Two Frequency-Division Demultiplexing Using Photonic Waveguides by the Presence of Two Geometric Defects Enhancement of Neural Network Performance with the Use of Two Novel Activation Functions: modExp and modExpm Automated Lightweight Descriptor Generation for Hyperspectral Image Analysis Accuracy and Performance Analysis of the 1/t Wang-Landau Algorithm in the Joint Density of States Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1