Runaway Electrons in a Gas Diode with a Wedge-Shaped Cathode

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Pub Date : 2024-09-26 DOI:10.1134/S1063784224060495
N. M. Zubarev, O. V. Zubareva, M. I. Yalandin
{"title":"Runaway Electrons in a Gas Diode with a Wedge-Shaped Cathode","authors":"N. M. Zubarev,&nbsp;O. V. Zubareva,&nbsp;M. I. Yalandin","doi":"10.1134/S1063784224060495","DOIUrl":null,"url":null,"abstract":"<p>The features of electron runaway in a gas diode with a wedge-shaped cathode providing a sharply inhomogeneous distribution of the electric field in the interelectrode gap are studied. It is shown that the character and conditions of runaway are qualitatively different for wedges with relatively large and small opening angles, i.e., in fact, for different degrees of field inhomogeneity. In the first case, the transition to the runaway mode is determined by the behavior of electrons in the immediate vicinity of their starting point, the vertex of the wedge-shaped cathode. For a wedge close in shape to a blade (opening angle less than 30° degrees), the relative contribution of the braking force for electrons in the gas increases with distance from the cathode, and their behavior at the periphery, near the anode, begins to play a key role in the analysis of runaway conditions. The influence of an external magnetic field on the geometry of the ionized region near the wedge vertex, starting from which the electrons become runaways, is also discussed.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 6","pages":"1846 - 1856"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224060495","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The features of electron runaway in a gas diode with a wedge-shaped cathode providing a sharply inhomogeneous distribution of the electric field in the interelectrode gap are studied. It is shown that the character and conditions of runaway are qualitatively different for wedges with relatively large and small opening angles, i.e., in fact, for different degrees of field inhomogeneity. In the first case, the transition to the runaway mode is determined by the behavior of electrons in the immediate vicinity of their starting point, the vertex of the wedge-shaped cathode. For a wedge close in shape to a blade (opening angle less than 30° degrees), the relative contribution of the braking force for electrons in the gas increases with distance from the cathode, and their behavior at the periphery, near the anode, begins to play a key role in the analysis of runaway conditions. The influence of an external magnetic field on the geometry of the ionized region near the wedge vertex, starting from which the electrons become runaways, is also discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有楔形阴极的气体二极管中的失控电子
研究了在电极间隙中电场分布极不均匀的楔形阴极气体二极管中电子失控的特征。研究表明,对于开口角相对较大和较小的楔形阴极,即不同程度的电场不均匀性,失控的特征和条件在本质上是不同的。在第一种情况下,向失控模式的过渡是由电子在其起点(楔形阴极的顶点)附近的行为决定的。对于形状接近叶片的楔形阴极(开口角小于 30°),气体中电子制动力的相对贡献随阴极距离的增加而增加,电子在靠近阳极的外围的行为开始在失控条件分析中发挥关键作用。此外,还讨论了外部磁场对楔形顶点附近电离区几何形状的影响,电子就是从这里开始失控的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
期刊最新文献
Damage Resistance of Corundum Treated with Abrasive and Contact-Free Processing Mathematical Modeling of the Main Characteristics of Cold Field and Thermal Field Electron Cathodes of Scanning Electron Microscopes in the Study of Biological Samples Control of Fluid Flow Movement in Porous Medium with NMR-Relaxometry Method Localization and Charge State of Metal Ions in Carbon Nanostructures of Europium Bis-Phthalocyanine Pyrolysed Derivatives Investigation of the Emission Spectrum of a Fast Capillary Discharge in the “Water Window” Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1