Generating in-store customer journeys from scratch with GPT architectures

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2024-09-26 DOI:10.1140/epjb/s10051-024-00778-1
Taizo Horikomi, Takayuki Mizuno
{"title":"Generating in-store customer journeys from scratch with GPT architectures","authors":"Taizo Horikomi,&nbsp;Takayuki Mizuno","doi":"10.1140/epjb/s10051-024-00778-1","DOIUrl":null,"url":null,"abstract":"<p>We propose a method that can generate customer trajectories and purchasing behaviors in retail stores simultaneously using Transformer-based deep learning structure. Utilizing customer trajectory data, layout diagrams, and retail scanner data obtained from a retail store, we trained a GPT-2 architecture from scratch to generate indoor trajectories and purchase actions. Additionally, we explored the effectiveness of fine-tuning the pre-trained model with data from another store. Results demonstrate that our method reproduces in-store trajectories and purchase behaviors more accurately than LSTM and SVM models, with fine-tuning significantly reducing the required training data.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00778-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00778-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method that can generate customer trajectories and purchasing behaviors in retail stores simultaneously using Transformer-based deep learning structure. Utilizing customer trajectory data, layout diagrams, and retail scanner data obtained from a retail store, we trained a GPT-2 architecture from scratch to generate indoor trajectories and purchase actions. Additionally, we explored the effectiveness of fine-tuning the pre-trained model with data from another store. Results demonstrate that our method reproduces in-store trajectories and purchase behaviors more accurately than LSTM and SVM models, with fine-tuning significantly reducing the required training data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GPT 架构从零开始生成店内顾客旅程
我们提出了一种方法,利用基于变换器的深度学习结构,可以同时生成零售店内的顾客轨迹和购买行为。利用从零售店获得的顾客轨迹数据、布局图和零售扫描仪数据,我们从头开始训练了一个 GPT-2 架构,以生成室内轨迹和购买行为。此外,我们还利用另一家商店的数据探索了微调预训练模型的有效性。结果表明,与 LSTM 和 SVM 模型相比,我们的方法能更准确地再现店内轨迹和购买行为,而微调则大大减少了所需的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Directional localization in disordered 2D tight-binding systems: insights from single-particle entanglement measures Synthetic data generation with hybrid quantum-classical models for the financial sector Nightclub bar dynamics: statistics of serving times Labeling small-degree nodes promotes semi-supervised community detection on graph convolutional network Multistability in a predator–prey model with generalist predator and strong Allee effect in prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1