Mathematical Modeling of the Main Characteristics of Cold Field and Thermal Field Electron Cathodes of Scanning Electron Microscopes in the Study of Biological Samples
S. N. Mamaeva, A. N. Pavlov, N. A. Nikolaeva, G. V. Maksimov
{"title":"Mathematical Modeling of the Main Characteristics of Cold Field and Thermal Field Electron Cathodes of Scanning Electron Microscopes in the Study of Biological Samples","authors":"S. N. Mamaeva, A. N. Pavlov, N. A. Nikolaeva, G. V. Maksimov","doi":"10.1134/S1063784224070284","DOIUrl":null,"url":null,"abstract":"<p>Main emission characteristics of thermal field and cold field electron cathodes were calculated. Emitters surface forms are approximated by second-order surfaces and anodes are approximated by equipotential surfaces. Systems, consisting of 18 first order ordinary differential equations, are solved using the numerical Runge–Kutta method. As a result, trajectories of the “boundary” electrons were obtained, which determine beam shapes and sizes and density distributions charges and electric field strengths. Analysis of beam parameters let to determine special properties of scanning electron microscopes with thermal field electron cathodes and with cold field electron cathodes for studying biological samples.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 7","pages":"2045 - 2048"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224070284","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Main emission characteristics of thermal field and cold field electron cathodes were calculated. Emitters surface forms are approximated by second-order surfaces and anodes are approximated by equipotential surfaces. Systems, consisting of 18 first order ordinary differential equations, are solved using the numerical Runge–Kutta method. As a result, trajectories of the “boundary” electrons were obtained, which determine beam shapes and sizes and density distributions charges and electric field strengths. Analysis of beam parameters let to determine special properties of scanning electron microscopes with thermal field electron cathodes and with cold field electron cathodes for studying biological samples.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.