{"title":"Comparison of infant bone marrow- and umbilical cord-derived mesenchymal stem cells in multilineage differentiation","authors":"Szu-Hsien Wu , Jin-Huei Yu , Yu-Ting Liao , Po-Hsin Chou , Ming-Hsuan Wen , Kuang-Kai Hsueh , Jung-Pan Wang","doi":"10.1016/j.reth.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>We compared infant bone marrow-derived mesenchymal stem cells (infant BMSCs) with umbilical cord-derived mesenchymal stem cells (UCSCs) by assessing multilineage differentiation. Proliferation was gauged through changes in cell numbers and doubling time. Senescence-related genes (<em>p16</em>, <em>p21</em>, and <em>p53</em>), senescence-associated β-galactosidase (SA-β-gal), and γH2AX immunofluorescence determined senescence presence. Superoxide dismutases (SODs) and genes related to various differentiations were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Differentiation was confirmed through histochemical, immunohistochemical, and immunofluorescence staining. Infant BMSCs surpassed UCSCs in proliferation. Infant BMSCs exhibited lower senescence-related gene expression at late passages, upregulated antioxidant enzymes during early passages, and reduced SA-β-gal staining. Chondrogenic gene expression (<em>SOX9</em>, <em>COL2</em>, and <em>COL10</em>) was enhanced in infant BMSCs, along with improved immunohistochemical staining. Infant BMSCs showed higher expression of osteogenic (<em>ALP</em> and <em>OCN</em>) and adipogenic (<em>PPARγ</em> and <em>LPL</em>) genes, confirmed by histochemical staining. However, UCSCs had higher expression of tenogenic genes (<em>MMP3</em>, <em>SCX</em>, <em>DCN</em>, and <em>TNC</em>). Hepatogenic differentiation potential was similar, with no significant difference in hepatogenic gene expression (<em>ALB</em> and <em>TAT</em>). Compared to UCSCs, infant BMSCs demonstrated superior proliferation, reduced senescence, increased antioxidant capacity, and enhanced differentiation potential toward chondrogenic, osteogenic, and adipogenic lineages.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 837-849"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235232042400172X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We compared infant bone marrow-derived mesenchymal stem cells (infant BMSCs) with umbilical cord-derived mesenchymal stem cells (UCSCs) by assessing multilineage differentiation. Proliferation was gauged through changes in cell numbers and doubling time. Senescence-related genes (p16, p21, and p53), senescence-associated β-galactosidase (SA-β-gal), and γH2AX immunofluorescence determined senescence presence. Superoxide dismutases (SODs) and genes related to various differentiations were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Differentiation was confirmed through histochemical, immunohistochemical, and immunofluorescence staining. Infant BMSCs surpassed UCSCs in proliferation. Infant BMSCs exhibited lower senescence-related gene expression at late passages, upregulated antioxidant enzymes during early passages, and reduced SA-β-gal staining. Chondrogenic gene expression (SOX9, COL2, and COL10) was enhanced in infant BMSCs, along with improved immunohistochemical staining. Infant BMSCs showed higher expression of osteogenic (ALP and OCN) and adipogenic (PPARγ and LPL) genes, confirmed by histochemical staining. However, UCSCs had higher expression of tenogenic genes (MMP3, SCX, DCN, and TNC). Hepatogenic differentiation potential was similar, with no significant difference in hepatogenic gene expression (ALB and TAT). Compared to UCSCs, infant BMSCs demonstrated superior proliferation, reduced senescence, increased antioxidant capacity, and enhanced differentiation potential toward chondrogenic, osteogenic, and adipogenic lineages.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.