Diverse non-homogeneous texture synthesis from a single exemplar

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-10-04 DOI:10.1016/j.cag.2024.104099
A. Phillips , J. Lang , D. Mould
{"title":"Diverse non-homogeneous texture synthesis from a single exemplar","authors":"A. Phillips ,&nbsp;J. Lang ,&nbsp;D. Mould","doi":"10.1016/j.cag.2024.104099","DOIUrl":null,"url":null,"abstract":"<div><div>Capturing non-local, long range features present in non-homogeneous textures is difficult to achieve with existing techniques. We introduce a new training method and architecture for single-exemplar texture synthesis that combines a Generative Adversarial Network (GAN) and a Variational Autoencoder (VAE). In the proposed architecture, the combined networks share information during training via structurally identical, independent blocks, facilitating highly diverse texture variations from a single image exemplar. Supporting this training method, we also include a similarity loss term that further encourages diverse output while also improving the overall quality. Using our approach, it is possible to produce diverse results over the entire sample size taken from a single model that can be trained in approximately 15 min. We show that our approach obtains superior performance when compared to SOTA texture synthesis methods and single image GAN methods using standard diversity and quality metrics.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104099"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002346","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing non-local, long range features present in non-homogeneous textures is difficult to achieve with existing techniques. We introduce a new training method and architecture for single-exemplar texture synthesis that combines a Generative Adversarial Network (GAN) and a Variational Autoencoder (VAE). In the proposed architecture, the combined networks share information during training via structurally identical, independent blocks, facilitating highly diverse texture variations from a single image exemplar. Supporting this training method, we also include a similarity loss term that further encourages diverse output while also improving the overall quality. Using our approach, it is possible to produce diverse results over the entire sample size taken from a single model that can be trained in approximately 15 min. We show that our approach obtains superior performance when compared to SOTA texture synthesis methods and single image GAN methods using standard diversity and quality metrics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单一范例中合成多样化非均质纹理
现有技术难以捕捉非同质纹理中的非局部、长距离特征。我们为单例纹理合成引入了一种新的训练方法和架构,它结合了生成对抗网络(GAN)和变异自动编码器(VAE)。在所提出的架构中,组合网络在训练过程中通过结构相同的独立块共享信息,从而促进单个图像示例的纹理变化高度多样化。为了支持这种训练方法,我们还加入了一个相似性损失项,在提高整体质量的同时,进一步鼓励多样化的输出。使用我们的方法,可以在大约 15 分钟的时间内,通过一个单一模型的训练,在整个样本大小上产生多样化的结果。我们的研究表明,与 SOTA 纹理合成方法和使用标准多样性和质量指标的单图像 GAN 方法相比,我们的方法具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1