Changhong Zhou , Qing Zhong , Mu Chen , Tao Wen , Xionghua Wu , Weitong Meng , Miaomiao Zhang
{"title":"A continuous-discontinuous coupling computational method for multi-material mixtures","authors":"Changhong Zhou , Qing Zhong , Mu Chen , Tao Wen , Xionghua Wu , Weitong Meng , Miaomiao Zhang","doi":"10.1016/j.ijmecsci.2024.109760","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the important role of particle-reinforced composites (PRCs), and to accurately assess the mechanical properties of PRC with arbitrarily complex internal structures, this paper proposes a new continuous-discontinuous coupled computational method, i.e., the multi-material integrated analysis (MIA) method, by combining the advantages of the discontinuous deformation analysis (DDA) method, the numerical manifold method (NMM), and the meshless method, for the continuous-discontinuous dual state of this kind of materials when they are subjected to forces. The core idea of this method is by establishing a single physical cover (PC) on each particle and defining a unified and piecewise approximation function over it to achieve displacement coordination between the particles and the matrix. In this model, the particles can maintain the contact and separation characteristics like the blocks, while the matrix is able to achieve the bonding function by overlapping different covers. Two numerical integration schemes, namely single-point Gaussian integration and Monte Carlo integration, are proposed to address the integration issues in stiffness matrix calculations. Meanwhile by considering the similarity between NMM and meshless method interpolation function construction, this paper combines circular coverage and 0th-order moving least squares to construct the interpolation function to form the displacement approximation function for the whole solution space. Moreover, the method of lattice retrieval (also Nearest Neighbor Search, NNS) is invoked for particle contact determination to improve the efficiency of contact and coverage relationship determination. The validity of the model is verified by taking asphalt mixture, a typical PRC, as a demonstrative case study. The results show that the MIA method solves the one-sided problem that the existing algorithms usually only consider the continuous or discontinuous properties of PRC, and provides a new method for comprehensively analyzing the micromechanical response of PRC and solving its large deformation problem.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109760"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008014","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the important role of particle-reinforced composites (PRCs), and to accurately assess the mechanical properties of PRC with arbitrarily complex internal structures, this paper proposes a new continuous-discontinuous coupled computational method, i.e., the multi-material integrated analysis (MIA) method, by combining the advantages of the discontinuous deformation analysis (DDA) method, the numerical manifold method (NMM), and the meshless method, for the continuous-discontinuous dual state of this kind of materials when they are subjected to forces. The core idea of this method is by establishing a single physical cover (PC) on each particle and defining a unified and piecewise approximation function over it to achieve displacement coordination between the particles and the matrix. In this model, the particles can maintain the contact and separation characteristics like the blocks, while the matrix is able to achieve the bonding function by overlapping different covers. Two numerical integration schemes, namely single-point Gaussian integration and Monte Carlo integration, are proposed to address the integration issues in stiffness matrix calculations. Meanwhile by considering the similarity between NMM and meshless method interpolation function construction, this paper combines circular coverage and 0th-order moving least squares to construct the interpolation function to form the displacement approximation function for the whole solution space. Moreover, the method of lattice retrieval (also Nearest Neighbor Search, NNS) is invoked for particle contact determination to improve the efficiency of contact and coverage relationship determination. The validity of the model is verified by taking asphalt mixture, a typical PRC, as a demonstrative case study. The results show that the MIA method solves the one-sided problem that the existing algorithms usually only consider the continuous or discontinuous properties of PRC, and provides a new method for comprehensively analyzing the micromechanical response of PRC and solving its large deformation problem.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.