Yavuz Öztürk , Ali Altan Yılmaz , Yiğit Seymen , Coşkun Harmanşah
{"title":"A low-cost electronic and optical system for magnetic hyperthermia experimental studies","authors":"Yavuz Öztürk , Ali Altan Yılmaz , Yiğit Seymen , Coşkun Harmanşah","doi":"10.1016/j.jmmm.2024.172552","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic hyperthermia is an alternative to treatments such as chemotherapy and radiotherapy that employs the heat generated by magnetic nanoparticles under the influence of a magnetic field to kill cancer cells while ideally causing no harm to healthy tissues. A low-cost magnetic hyperthermia investigation platform with commercially available and easy-to-assemble parts was presented to provide and expand research in this area for a larger scientific community. The magnetic hyperthermia measurement system consists of three main parts: a designed thermally insulated sample holder, a commercial 88 kHz magnetic induction heater, and a custom-built fiber optic based refractometer as temperature sensor. The system was tested with commercial EFH-1 magnetic fluids. Time dependent temperature changes were measured for applied magnetic fields of 3.5 kA/m, 4.8 kA/m, and 6.0 kA/m. The corresponding specific loss power values were calculated as 0.28 W/g, 0.51 W/g, and 0.79 W/g, respectively. Intrinsic loss power of commercial ferrofluid was determined as 0.25 ± 0.01 nHm<sup>2</sup>/kg, found to be comparable to the results of specialized commercial magnetic hyperthermia systems. The results show that the system can easily be used for hyperthermia demonstrations for educational purposes as well as in convenient scientific research with proper calibration.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"610 ","pages":"Article 172552"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324008436","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic hyperthermia is an alternative to treatments such as chemotherapy and radiotherapy that employs the heat generated by magnetic nanoparticles under the influence of a magnetic field to kill cancer cells while ideally causing no harm to healthy tissues. A low-cost magnetic hyperthermia investigation platform with commercially available and easy-to-assemble parts was presented to provide and expand research in this area for a larger scientific community. The magnetic hyperthermia measurement system consists of three main parts: a designed thermally insulated sample holder, a commercial 88 kHz magnetic induction heater, and a custom-built fiber optic based refractometer as temperature sensor. The system was tested with commercial EFH-1 magnetic fluids. Time dependent temperature changes were measured for applied magnetic fields of 3.5 kA/m, 4.8 kA/m, and 6.0 kA/m. The corresponding specific loss power values were calculated as 0.28 W/g, 0.51 W/g, and 0.79 W/g, respectively. Intrinsic loss power of commercial ferrofluid was determined as 0.25 ± 0.01 nHm2/kg, found to be comparable to the results of specialized commercial magnetic hyperthermia systems. The results show that the system can easily be used for hyperthermia demonstrations for educational purposes as well as in convenient scientific research with proper calibration.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.