Multimodal fusion fault diagnosis method under noise interference

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS Applied Acoustics Pub Date : 2024-10-02 DOI:10.1016/j.apacoust.2024.110301
Zhi Qiu , Shanfei Fan , Haibo Liang, Jincai Liu
{"title":"Multimodal fusion fault diagnosis method under noise interference","authors":"Zhi Qiu ,&nbsp;Shanfei Fan ,&nbsp;Haibo Liang,&nbsp;Jincai Liu","doi":"10.1016/j.apacoust.2024.110301","DOIUrl":null,"url":null,"abstract":"<div><div>In practical industrial production environments, the collection of fault signals is often accompanied by significant background noise. The presence of substantial noise makes feature extraction from fault signals very challenging, thereby reducing fault diagnosis performance. To address this issue, this paper proposes a multimodal fusion fault diagnosis method based on a multiscale stacked denoising autoencoder and dual-branch feature fusion network (MSSDAE-DBFFN). First, the noisy vibration signals are denoised using the MSSDAE. Then, the denoised vibration signals are divided into two branches for feature extraction and fusion. In one branch, the vibration signals are converted into gramian angular summation field (GASF) images using the GASF, and feature extraction is performed with a multiscale convolutional network. In the other branch, the waveforms are subjected to feature extraction using a wavelet scattering network. Finally, the fused features are sent to a classifier to complete the fault diagnosis task. To demonstrate the effectiveness of the proposed method, it is compared with four different denoising methods and five different classification methods across two datasets. The experimental results show that MSSDAE-DBFFN outperforms the other methods in both denoising and classification across five different signal-to-noise ratios (SNR). At an SNR of −10 dB, the SNRs after denoising are 4.582 dB and 5.489 dB, respectively, while the accuracy rates are 89.33 % and 91.67 %, respectively.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004523","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In practical industrial production environments, the collection of fault signals is often accompanied by significant background noise. The presence of substantial noise makes feature extraction from fault signals very challenging, thereby reducing fault diagnosis performance. To address this issue, this paper proposes a multimodal fusion fault diagnosis method based on a multiscale stacked denoising autoencoder and dual-branch feature fusion network (MSSDAE-DBFFN). First, the noisy vibration signals are denoised using the MSSDAE. Then, the denoised vibration signals are divided into two branches for feature extraction and fusion. In one branch, the vibration signals are converted into gramian angular summation field (GASF) images using the GASF, and feature extraction is performed with a multiscale convolutional network. In the other branch, the waveforms are subjected to feature extraction using a wavelet scattering network. Finally, the fused features are sent to a classifier to complete the fault diagnosis task. To demonstrate the effectiveness of the proposed method, it is compared with four different denoising methods and five different classification methods across two datasets. The experimental results show that MSSDAE-DBFFN outperforms the other methods in both denoising and classification across five different signal-to-noise ratios (SNR). At an SNR of −10 dB, the SNRs after denoising are 4.582 dB and 5.489 dB, respectively, while the accuracy rates are 89.33 % and 91.67 %, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声干扰下的多模态融合故障诊断方法
在实际的工业生产环境中,故障信号的采集往往伴随着大量的背景噪声。大量噪声的存在使得从故障信号中提取特征非常具有挑战性,从而降低了故障诊断性能。针对这一问题,本文提出了一种基于多尺度堆叠去噪自动编码器和双分支特征融合网络(MSSDAE-DBFFN)的多模态融合故障诊断方法。首先,使用 MSSDAE 对噪声振动信号进行去噪。然后,去噪后的振动信号被分为两个分支,用于特征提取和融合。在一个分支中,使用 GASF 将振动信号转换成格兰角加和场(GASF)图像,并使用多尺度卷积网络进行特征提取。在另一个分支中,使用小波散射网络对波形进行特征提取。最后,将融合后的特征发送给分类器,以完成故障诊断任务。为了证明所提方法的有效性,我们在两个数据集上将其与四种不同的去噪方法和五种不同的分类方法进行了比较。实验结果表明,在五种不同的信噪比(SNR)下,MSSDAE-DBFFN 在去噪和分类方面都优于其他方法。在信噪比为 -10 dB 时,去噪后的信噪比分别为 4.582 dB 和 5.489 dB,准确率分别为 89.33 % 和 91.67 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
期刊最新文献
Fibonacci array-based temporal-spatial localization with neural networks Semi-analytical prediction of energy-based acoustical parameters in proscenium theatres Preparation and performance analysis of porous materials for road noise abatement using waste rubber tires Acoustic characteristics of whispered vowels: A dynamic feature exploration A high DOF and azimuth resolution beamforming via enhanced virtual aperture extension of joint linear prediction and inverse beamforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1