Haitao He , Sheng Wang , Yanmin Wang , Ke Liu , Lu Yu
{"title":"VulTR: Software vulnerability detection model based on multi-layer key feature enhancement","authors":"Haitao He , Sheng Wang , Yanmin Wang , Ke Liu , Lu Yu","doi":"10.1016/j.cose.2024.104139","DOIUrl":null,"url":null,"abstract":"<div><div>Software vulnerabilities pose a huge threat to current network security, which continues to lead to data leaks and system damage. In order to effectively identify and patch these vulnerabilities, researchers have proposed automated detection methods based on deep learning. However, most of the existing methods only rely on single-dimensional data representation and fail to fully explore the composite characteristics of the code. Among them, the sequence embedding method fails to effectively capture the structural characteristics of the code, while the graph embedding method focuses more on the global characteristics of the overall graph structure and is still insufficient in optimizing the representation of nodes. In view of this, this paper constructs the VulTR model, which incorporates an importance assessment mechanism to strengthen the key syntax levels of the source code (from lexical elements to nodes and graph-level structures), significantly improving the importance of key vulnerability features in classification decisions. At the same time, a relationship connection diagram is constructed to describe the spatial characteristics of the correlations between functions. Experimentally verified, VulTR's F1 scores on both synthetic and real data sets exceed those of the compared models (VulDeePecker, SySeVR, Devign, VulCNN, IVDetect, and mVulPreter).</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104139"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004449","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Software vulnerabilities pose a huge threat to current network security, which continues to lead to data leaks and system damage. In order to effectively identify and patch these vulnerabilities, researchers have proposed automated detection methods based on deep learning. However, most of the existing methods only rely on single-dimensional data representation and fail to fully explore the composite characteristics of the code. Among them, the sequence embedding method fails to effectively capture the structural characteristics of the code, while the graph embedding method focuses more on the global characteristics of the overall graph structure and is still insufficient in optimizing the representation of nodes. In view of this, this paper constructs the VulTR model, which incorporates an importance assessment mechanism to strengthen the key syntax levels of the source code (from lexical elements to nodes and graph-level structures), significantly improving the importance of key vulnerability features in classification decisions. At the same time, a relationship connection diagram is constructed to describe the spatial characteristics of the correlations between functions. Experimentally verified, VulTR's F1 scores on both synthetic and real data sets exceed those of the compared models (VulDeePecker, SySeVR, Devign, VulCNN, IVDetect, and mVulPreter).
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.