Echocardiographic Diagnosis of Hypertrophic Cardiomyopathy by Machine Learning

Nasibeh Zanjirani Farahani PhD , Mateo Alzate Aguirre MD , Vanessa Karlinski Vizentin MD , Moein Enayati PhD , J. Martijn Bos MD, PhD , Andredi Pumarejo Medina MD , Kathryn F. Larson MD , Kalyan S. Pasupathy PhD , Christopher G. Scott MS , April L. Zacher MS , Eduard Schlechtinger MS , Bruce K. Daniels RDCS , Vinod C. Kaggal MS , Jeffrey B. Geske MD , Patricia A. Pellikka MD , Jae K. Oh MD , Steve R. Ommen MD , Garvan C. Kane MD , Michael J. Ackerman MD, PhD , Adelaide M. Arruda-Olson MD, PhD
{"title":"Echocardiographic Diagnosis of Hypertrophic Cardiomyopathy by Machine Learning","authors":"Nasibeh Zanjirani Farahani PhD ,&nbsp;Mateo Alzate Aguirre MD ,&nbsp;Vanessa Karlinski Vizentin MD ,&nbsp;Moein Enayati PhD ,&nbsp;J. Martijn Bos MD, PhD ,&nbsp;Andredi Pumarejo Medina MD ,&nbsp;Kathryn F. Larson MD ,&nbsp;Kalyan S. Pasupathy PhD ,&nbsp;Christopher G. Scott MS ,&nbsp;April L. Zacher MS ,&nbsp;Eduard Schlechtinger MS ,&nbsp;Bruce K. Daniels RDCS ,&nbsp;Vinod C. Kaggal MS ,&nbsp;Jeffrey B. Geske MD ,&nbsp;Patricia A. Pellikka MD ,&nbsp;Jae K. Oh MD ,&nbsp;Steve R. Ommen MD ,&nbsp;Garvan C. Kane MD ,&nbsp;Michael J. Ackerman MD, PhD ,&nbsp;Adelaide M. Arruda-Olson MD, PhD","doi":"10.1016/j.mcpdig.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop machine learning tools for automated hypertrophic cardiomyopathy (HCM) case recognition from echocardiographic metrics, aiming to identify HCM from standard echocardiographic data with high performance.</div></div><div><h3>Patients and Methods</h3><div>Four different random forest machine learning models were developed using a case-control cohort composed of 5548 patients with HCM and 16,973 controls without HCM, from January 1, 2004, to March 15, 2019. Each patient with HCM was matched to 3 controls by sex, age, and year of echocardiography. Ten-fold crossvalidation was used to train the models to identify HCM. Variables included in the models were demographic characteristics (age, sex, and body surface area) and 16 standard echocardiographic metrics.</div></div><div><h3>Results</h3><div>The models were differentiated by global, average, individual, or no strain measurements. Area under the receiver operating characteristic curves (area under the curve) ranged from 0.92 to 0.98 for the 4 separate models. Area under the curves of model 2 (using left ventricular global longitudinal strain; 0.97; 95% CI, 0.95-0.98), 3 (using averaged strain; 0.96; 95% CI, 0.94-0.97), and 4 (using 17 individual strains per patient; 0.98; 95% CI, 0.97-0.99) had comparable performance. By comparison, model 1 (no strain data; 0.92; 95% CI, 0.90-0.94) had an inferior area under the curve.</div></div><div><h3>Conclusion</h3><div>Machine learning tools that analyze echocardiographic metrics identified HCM cases with high performance. Detection of HCM cases improved when strain data was combined with standard echocardiographic metrics.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 4","pages":"Pages 564-573"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To develop machine learning tools for automated hypertrophic cardiomyopathy (HCM) case recognition from echocardiographic metrics, aiming to identify HCM from standard echocardiographic data with high performance.

Patients and Methods

Four different random forest machine learning models were developed using a case-control cohort composed of 5548 patients with HCM and 16,973 controls without HCM, from January 1, 2004, to March 15, 2019. Each patient with HCM was matched to 3 controls by sex, age, and year of echocardiography. Ten-fold crossvalidation was used to train the models to identify HCM. Variables included in the models were demographic characteristics (age, sex, and body surface area) and 16 standard echocardiographic metrics.

Results

The models were differentiated by global, average, individual, or no strain measurements. Area under the receiver operating characteristic curves (area under the curve) ranged from 0.92 to 0.98 for the 4 separate models. Area under the curves of model 2 (using left ventricular global longitudinal strain; 0.97; 95% CI, 0.95-0.98), 3 (using averaged strain; 0.96; 95% CI, 0.94-0.97), and 4 (using 17 individual strains per patient; 0.98; 95% CI, 0.97-0.99) had comparable performance. By comparison, model 1 (no strain data; 0.92; 95% CI, 0.90-0.94) had an inferior area under the curve.

Conclusion

Machine learning tools that analyze echocardiographic metrics identified HCM cases with high performance. Detection of HCM cases improved when strain data was combined with standard echocardiographic metrics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习诊断肥厚型心肌病的超声心动图
目标开发用于从超声心动图指标自动识别肥厚型心肌病(HCM)病例的机器学习工具,旨在从标准超声心动图数据中高效识别 HCM。根据性别、年龄和超声心动图检查年份,每名 HCM 患者与 3 名对照者配对。使用十次交叉验证来训练识别 HCM 的模型。模型中的变量包括人口统计学特征(年龄、性别和体表面积)和 16 项标准超声心动图指标。4 个独立模型的接收者操作特征曲线下面积(曲线下面积)从 0.92 到 0.98 不等。模型 2(使用左心室整体纵向应变;0.97;95% CI,0.95-0.98)、模型 3(使用平均应变;0.96;95% CI,0.94-0.97)和模型 4(使用每位患者 17 个单个应变;0.98;95% CI,0.97-0.99)的曲线下面积表现相当。相比之下,模型 1(无应变数据;0.92;95% CI,0.90-0.94)的曲线下面积较低。当应变数据与标准超声心动图指标相结合时,对 HCM 病例的检测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
期刊最新文献
Developing a Research Center for Artificial Intelligence in Medicine Strategic Considerations for Selecting Artificial Intelligence Solutions for Institutional Integration: A Single-Center Experience Reviewers for Mayo Clinic Proceedings: Digital Health (2024) A Blueprint for Clinical-Driven Medical Device Development: The Feverkidstool Application to Identify Children With Serious Bacterial Infection Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1