Madhumita Pal , Ganapati Panda , Ranjan K. Mohapatra , Adyasha Rath , Sujata Dash , Mohd Asif Shah , Saurav Mallik
{"title":"Ensemble approach of deep learning models for binary and multiclass classification of histopathological images for breast cancer","authors":"Madhumita Pal , Ganapati Panda , Ranjan K. Mohapatra , Adyasha Rath , Sujata Dash , Mohd Asif Shah , Saurav Mallik","doi":"10.1016/j.prp.2024.155644","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer (BC) is the most frequently occurring cancer disease observed in women after lung cancer. Out of different stages, invasive ductal BC causes maximum deaths in women. In this work, three deep learning (DL) models such as Vision Transformer (ViT), Convmixer, and Visual Geometry Group-19 (VGG-19) are implemented for the detection and classification of different breast cancer tumors with the help of Breast cancer histopathological (Break His) image database. The performance of each model is evaluated using an 80:20 training scheme and measured in terms of accuracy, precision, recall, loss, F1-score, and area under the curve (AUC). From the simulation result, ViT showed the best performance for binary classification of breast cancer tumors with accuracy, precision, recall, and F1-score of 99.89 %, 98.29 %, 98.29 %, and 98.29 %, respectively. Also, ViT showed the best performance in terms of accuracy (98.21 %), average Precision (89.84 %), recall (89.97 %), and F1-score (88.75) for eight class classifications. Moreover, we have also ensemble the ViT-Convmixer model and observed that the performance of the ensemble model is reduced as compared to the ViT model. We have also compared the performance of the proposed best model with other existing models reported by several research groups. The study will help find suitable models that will increase accuracy in early diagnoses of BC. We hope the study will also help to minimize human errors in the early diagnosis of this fatal disease and administer appropriate treatment. The proposed model may also be implemented for the detection of other diseases with improved accuracy.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"263 ","pages":"Article 155644"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824005557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is the most frequently occurring cancer disease observed in women after lung cancer. Out of different stages, invasive ductal BC causes maximum deaths in women. In this work, three deep learning (DL) models such as Vision Transformer (ViT), Convmixer, and Visual Geometry Group-19 (VGG-19) are implemented for the detection and classification of different breast cancer tumors with the help of Breast cancer histopathological (Break His) image database. The performance of each model is evaluated using an 80:20 training scheme and measured in terms of accuracy, precision, recall, loss, F1-score, and area under the curve (AUC). From the simulation result, ViT showed the best performance for binary classification of breast cancer tumors with accuracy, precision, recall, and F1-score of 99.89 %, 98.29 %, 98.29 %, and 98.29 %, respectively. Also, ViT showed the best performance in terms of accuracy (98.21 %), average Precision (89.84 %), recall (89.97 %), and F1-score (88.75) for eight class classifications. Moreover, we have also ensemble the ViT-Convmixer model and observed that the performance of the ensemble model is reduced as compared to the ViT model. We have also compared the performance of the proposed best model with other existing models reported by several research groups. The study will help find suitable models that will increase accuracy in early diagnoses of BC. We hope the study will also help to minimize human errors in the early diagnosis of this fatal disease and administer appropriate treatment. The proposed model may also be implemented for the detection of other diseases with improved accuracy.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.