{"title":"Early-age shrinkage behavior of cement mixtures regulated with metakaolin-based internal conditioning","authors":"Dayou Luo, Jianqiang Wei","doi":"10.1016/j.clay.2024.107583","DOIUrl":null,"url":null,"abstract":"<div><div>Shrinkage occurs in concrete during its hardening and strength gain process leading to undesired deformation, cracking, and decreases in strength and durability. While metakaolin-based internal conditioning (MIC) has been validated as a promising technique for modifying cement and mitigating alkali-silica reactions in concrete, its impact on the early-age shrinkage behavior of cement remains unexplored. This study delves into the effects of MIC and its coupling with lithium on the chemical shrinkage, autogenous shrinkage, and drying shrinkage of portalnd cement incorporating 30 % metakaolin with varying degrees of saturation (50 %, 75 %, and 100 %). The results indicate that the hydration of cement can be substantially enhanced by MIC with 29.0 % more heat released and a 32.3 % decrease in calcium hydroxide content. As a result of the enhanced hydration, cement with MIC yielded increased chemical shrinkage. Compared with dry MK, the autogenous shrinkage and drying shrinkage of cement were decreased by 38.0 % and 11.0 %, respectively, in the presence of MIC. A synergistic effect between MIC and lithium was suggested by the higher efficacy in suppressing autogenous shrinkage.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"261 ","pages":"Article 107583"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003314","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shrinkage occurs in concrete during its hardening and strength gain process leading to undesired deformation, cracking, and decreases in strength and durability. While metakaolin-based internal conditioning (MIC) has been validated as a promising technique for modifying cement and mitigating alkali-silica reactions in concrete, its impact on the early-age shrinkage behavior of cement remains unexplored. This study delves into the effects of MIC and its coupling with lithium on the chemical shrinkage, autogenous shrinkage, and drying shrinkage of portalnd cement incorporating 30 % metakaolin with varying degrees of saturation (50 %, 75 %, and 100 %). The results indicate that the hydration of cement can be substantially enhanced by MIC with 29.0 % more heat released and a 32.3 % decrease in calcium hydroxide content. As a result of the enhanced hydration, cement with MIC yielded increased chemical shrinkage. Compared with dry MK, the autogenous shrinkage and drying shrinkage of cement were decreased by 38.0 % and 11.0 %, respectively, in the presence of MIC. A synergistic effect between MIC and lithium was suggested by the higher efficacy in suppressing autogenous shrinkage.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...