Psychological disorder detection: A multimodal approach using a transformer-based hybrid model

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-09-24 DOI:10.1016/j.mex.2024.102976
Debadrita Ghosh , Hema Karande , Shilpa Gite , Biswajeet Pradhan
{"title":"Psychological disorder detection: A multimodal approach using a transformer-based hybrid model","authors":"Debadrita Ghosh ,&nbsp;Hema Karande ,&nbsp;Shilpa Gite ,&nbsp;Biswajeet Pradhan","doi":"10.1016/j.mex.2024.102976","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting psychological disorders, particularly depression, is a complex and critical task within the realm of mental health assessment. This research explores a novel approach to improve the identification of psychological distresses, such as depression, by addressing the subjectivity, complexity, and biasness inherent in traditional diagnostic techniques. Using multimodal data, such as voice characteristics and linguistic content from participant interviews, we developed a Transformer-Based Hybrid Model that combines advanced natural language processing and deep learning approaches. This model provides a complete assessment of an individual's psychological well-being by merging aural cues and textual data. This study investigates the theoretical underpinnings, technical complexities, and practical applications of this model in the context of psychological disorder detection. Additionally, the model's design and implementation details are thoroughly documented to ensure replicability by other researchers.<ul><li><span>•</span><span><div>A unique way of strengthening emotional ailments (focusing on depression).</div></span></li><li><span>•</span><span><div>Transformer-Based Hybrid Model is proposed using multimodal data from interviews of participants.</div></span></li><li><span>•</span><span><div>The model integrates voice characteristics (aural cues) and linguistic content (textual data).</div></span></li><li><span>•</span><span><div>Comparative analysis of this research with existing approaches.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"Article 102976"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124004278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting psychological disorders, particularly depression, is a complex and critical task within the realm of mental health assessment. This research explores a novel approach to improve the identification of psychological distresses, such as depression, by addressing the subjectivity, complexity, and biasness inherent in traditional diagnostic techniques. Using multimodal data, such as voice characteristics and linguistic content from participant interviews, we developed a Transformer-Based Hybrid Model that combines advanced natural language processing and deep learning approaches. This model provides a complete assessment of an individual's psychological well-being by merging aural cues and textual data. This study investigates the theoretical underpinnings, technical complexities, and practical applications of this model in the context of psychological disorder detection. Additionally, the model's design and implementation details are thoroughly documented to ensure replicability by other researchers.
  • A unique way of strengthening emotional ailments (focusing on depression).
  • Transformer-Based Hybrid Model is proposed using multimodal data from interviews of participants.
  • The model integrates voice characteristics (aural cues) and linguistic content (textual data).
  • Comparative analysis of this research with existing approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心理障碍检测:使用基于变压器的混合模型的多模式方法
检测心理障碍,尤其是抑郁症,是心理健康评估领域一项复杂而关键的任务。本研究探索了一种新方法,通过解决传统诊断技术中固有的主观性、复杂性和偏差,改进对抑郁症等心理困扰的识别。我们利用多模态数据,如来自参与者访谈的语音特征和语言内容,开发了一种基于变压器的混合模型,该模型结合了先进的自然语言处理和深度学习方法。该模型通过合并听觉线索和文本数据,提供了对个人心理健康的完整评估。本研究探讨了该模型的理论基础、技术复杂性以及在心理障碍检测中的实际应用。此外,还详细记录了该模型的设计和实施细节,以确保其他研究人员可以复制。-加强情绪疾病(重点是抑郁症)的独特方法-利用参与者访谈中的多模态数据提出基于变压器的混合模型-该模型整合了声音特征(听觉线索)和语言内容(文本数据)-该研究与现有方法的比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing Method for measuring the transpiration resistance of fruit and vegetables Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset Evaluative comparison of machine learning algorithms for stutter detection and classification Optimized Methyl methacrylate embedding of small and large undecalcified bones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1