Enabling large-scale and high-precision fluid simulations on near-term quantum computers

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-10-04 DOI:10.1016/j.cma.2024.117428
{"title":"Enabling large-scale and high-precision fluid simulations on near-term quantum computers","authors":"","doi":"10.1016/j.cma.2024.117428","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method “Iterative-QLS” that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation. The Poiseuille flow simulation achieved a relative error of less than 0.2%, and the unsteady acoustic wave simulation solved a 5043-dimensional matrix. We emphasize the utilization of the quantum–classical hybrid approach in applications of near-term quantum computers. By adapting to quantum hardware constraints and offering scalable solutions for large-scale CFD problems, our method paves the way for practical applications of near-term quantum computers in computational science.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006832","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method “Iterative-QLS” that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation. The Poiseuille flow simulation achieved a relative error of less than 0.2%, and the unsteady acoustic wave simulation solved a 5043-dimensional matrix. We emphasize the utilization of the quantum–classical hybrid approach in applications of near-term quantum computers. By adapting to quantum hardware constraints and offering scalable solutions for large-scale CFD problems, our method paves the way for practical applications of near-term quantum computers in computational science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在近期量子计算机上实现大规模高精度流体模拟
量子计算流体动力学(QCFD)利用量子算法提高效率,为经典计算流体动力学(CFD)提供了一种前景广阔的替代方法。本文介绍了一种全面的 QCFD 方法,包括一种可抑制量子线性求解器误差的迭代法 "迭代-QLS",以及一种可将求解扩展到更大尺寸的子空间法。我们在超导量子计算机上实现了我们的方法,成功地模拟了稳定的普伊塞耶流和非稳态声波传播。Poiseuille流模拟的相对误差小于0.2%,非稳态声波模拟求解了5043维矩阵。我们强调在近期量子计算机的应用中利用量子-经典混合方法。通过适应量子硬件限制并为大规模 CFD 问题提供可扩展的解决方案,我们的方法为近期量子计算机在计算科学领域的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1