Proactive conformance checking: An approach for predicting deviations in business processes

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Systems Pub Date : 2024-09-23 DOI:10.1016/j.is.2024.102461
Michael Grohs , Peter Pfeiffer , Jana-Rebecca Rehse
{"title":"Proactive conformance checking: An approach for predicting deviations in business processes","authors":"Michael Grohs ,&nbsp;Peter Pfeiffer ,&nbsp;Jana-Rebecca Rehse","doi":"10.1016/j.is.2024.102461","DOIUrl":null,"url":null,"abstract":"<div><div>Modern business processes are subject to an increasing number of external and internal regulations. Compliance with these regulations is crucial for the success of organizations. To ensure this compliance, process managers can identify and mitigate deviations between the predefined process behavior and the executed process instances by means of conformance checking techniques. However, these techniques are inherently reactive, meaning that they can only detect deviations after they have occurred. It would be desirable to detect and mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach that relies on a supervised machine learning model to predict which deviations can be expected in the future of running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further, it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining, BPDP thus enables process managers to prevent deviations in early stages of running process instances.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"127 ","pages":"Article 102461"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern business processes are subject to an increasing number of external and internal regulations. Compliance with these regulations is crucial for the success of organizations. To ensure this compliance, process managers can identify and mitigate deviations between the predefined process behavior and the executed process instances by means of conformance checking techniques. However, these techniques are inherently reactive, meaning that they can only detect deviations after they have occurred. It would be desirable to detect and mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach that relies on a supervised machine learning model to predict which deviations can be expected in the future of running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further, it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining, BPDP thus enables process managers to prevent deviations in early stages of running process instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动一致性检查:预测业务流程偏差的方法
现代业务流程受制于越来越多的外部和内部法规。遵守这些规定对企业的成功至关重要。为确保这种合规性,流程管理者可以通过一致性检查技术来识别和减少预定义流程行为与已执行流程实例之间的偏差。然而,这些技术本质上是被动的,也就是说,它们只能在偏差发生后才能检测到偏差。我们希望在偏差发生之前就能发现并减少偏差,从而使管理人员能够主动确保运行中的流程实例符合要求。在本文中,我们提出了业务流程偏差预测(BPDP),这是一种新颖的预测方法,它依靠有监督的机器学习模型来预测运行流程实例未来可能出现的偏差。BPDP 既能预测单个偏差,也能预测偏差模式。此外,它还能为用户提供预测偏差的潜在原因列表。我们的评估结果表明,BPDP 在偏差预测方面优于现有方法。因此,按照面向行动的流程挖掘理念,BPDP 能够让流程管理者在流程实例运行的早期阶段就防止出现偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
期刊最新文献
Discovering partially ordered workflow models Learning policies for resource allocation in business processes STracker: A framework for identifying sentiment changes in customer feedbacks Two-level massive string dictionaries A generative and discriminative model for diversity-promoting recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1