Structural and in vitro starch digestion of wheat flour noodles by calcium mediated gelation of low methoxyl pectin

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Structure-Netherlands Pub Date : 2024-10-01 DOI:10.1016/j.foostr.2024.100394
Muhammad Faiz Bin Muhd Faizal Abdullah Tan , Oni Yuliarti , Adeline Ik Chian Wong , Jerome Jie Long Wong
{"title":"Structural and in vitro starch digestion of wheat flour noodles by calcium mediated gelation of low methoxyl pectin","authors":"Muhammad Faiz Bin Muhd Faizal Abdullah Tan ,&nbsp;Oni Yuliarti ,&nbsp;Adeline Ik Chian Wong ,&nbsp;Jerome Jie Long Wong","doi":"10.1016/j.foostr.2024.100394","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of pectin addition with low degree esterification on wheat noodles’ physicochemical properties such as texture and <em>in vitro</em> starch digestibility were investigated. Wheat flour was incorporated with low methoxyl pectin (LMP) at five levels: 0 %, 0.5 %, 1 %, 2 % and 4 % w/w in calcium fortified wheat noodles. As LMP incorporation increased to 4 % w/w, noodle water absorption declined, due to formation of LMP gels. Noodles textural results revealed an increase in hardness, gumminess, cohesiveness and adhesiveness due to the increase in noodle thickness which corresponded well with noodle microstructure results. Rheological measurements showed an increase in wheat noodle viscoelastic properties as a result of addition of LMP. Similar results are also shown on the pasting profiles, where peak, trough and final viscosity were raised with the incorporation of LMP. Overall findings showed the incorporation of LMP was able to lower the <em>in vitro</em> starch digestibility, where addition of 2 % w/w resulted in the highest reduction. These results successfully indicated the LMP’s potential to be used as an ingredient in carbohydrate dense foods such as wheat noodle to retard starch digestion.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"42 ","pages":"Article 100394"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000303","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of pectin addition with low degree esterification on wheat noodles’ physicochemical properties such as texture and in vitro starch digestibility were investigated. Wheat flour was incorporated with low methoxyl pectin (LMP) at five levels: 0 %, 0.5 %, 1 %, 2 % and 4 % w/w in calcium fortified wheat noodles. As LMP incorporation increased to 4 % w/w, noodle water absorption declined, due to formation of LMP gels. Noodles textural results revealed an increase in hardness, gumminess, cohesiveness and adhesiveness due to the increase in noodle thickness which corresponded well with noodle microstructure results. Rheological measurements showed an increase in wheat noodle viscoelastic properties as a result of addition of LMP. Similar results are also shown on the pasting profiles, where peak, trough and final viscosity were raised with the incorporation of LMP. Overall findings showed the incorporation of LMP was able to lower the in vitro starch digestibility, where addition of 2 % w/w resulted in the highest reduction. These results successfully indicated the LMP’s potential to be used as an ingredient in carbohydrate dense foods such as wheat noodle to retard starch digestion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙介导的低甲氧基果胶凝胶化对小麦粉面条的结构和体外淀粉消化
研究了添加低度酯化果胶对小麦面条质地和体外淀粉消化率等理化特性的影响。在钙强化小麦面中添加了五种含量的低甲氧基果胶(LMP):0 %、0.5 %、1 %、2 % 和 4 % w/w。当 LMP 的添加量增加到 4% w/w 时,由于 LMP 凝胶的形成,面条的吸水性下降。面条质地结果显示,随着面条厚度的增加,面条的硬度、胶粘性、内聚性和粘合性都有所提高,这与面条的微观结构结果非常吻合。流变学测量结果表明,添加 LMP 后,小麦面条的粘弹性增加。粘贴曲线也显示了类似的结果,即添加 LMP 后,峰值粘度、谷值粘度和最终粘度都有所提高。总体结果表明,添加 LMP 能够降低体外淀粉消化率,其中添加 2% w/w 的淀粉消化率降低幅度最大。这些结果成功地表明,LMP 有潜力用作碳水化合物含量高的食品(如小麦面条)的配料,以延缓淀粉消化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
期刊最新文献
Structural and in vitro starch digestion of wheat flour noodles by calcium mediated gelation of low methoxyl pectin Changes in the rheological, textural, microstructural and in vitro antioxidant properties of biscuit dough by incorporation of the extract and fiber-rich residue obtained through green extraction of defatted date seeds Quantifying the distribution of proteins at the interface of oil-in-water food emulsions Capillary flow-MRI of micronized fat crystal dispersions: Effect of shear history on microstructure and flow Impact of hydrocolloids on 3D meat analog printing and cooking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1