{"title":"Micro-nano bubbles in action: AC/TiO2 hybrid photocatalysts for efficient organic pollutant degradation and antibacterial activity","authors":"","doi":"10.1016/j.bcab.2024.103400","DOIUrl":null,"url":null,"abstract":"<div><div>Developing highly active and sustainable photocatalysts is crucial for environmental remediation. This work focuses on the enhanced photocatalytic degradation efficiency of synthetic dyes using TiO<sub>2</sub>-coated AC hybrid photocatalysts under MNB aeration. The TiO<sub>2</sub>-coated AC hybrid photocatalyst (HP) was synthesized via a sol-gel method and characterized using XRD, FTIR, SEM, EDS, HR-TEM, and DRS. The study investigated the photocatalytic degradation of three dyes indigo carmine (IC), reactive black 5 (RB5), and methylene blue (MB) in wastewater, with initial dye concentrations ranging from 10 to 100 μM. Under UVA irradiation, the hybrid photocatalyst with MNB aeration (HP + UVA + MNB) achieved the highest degradation efficiencies of 69.09%, 60.06%, and 55.19% for IC, MB, and RB5, respectively. Further analysis showed that the chromophores and complex structures of these dyes were broken into intermediate products. The Langmuir-Hinshelwood kinetic model was used to describe the reaction mechanisms. The HP + UVA + MNB system demonstrated superior photocatalytic degradation activity, making it suitable for operational and environmental applications in dye wastewater treatment. Additionally, the antibacterial properties of AC and HP were tested at 100 μg/mL, showing effectiveness against both Gram-positive <em>Staphylococcus aureus</em> and Gram-negative <em>Escherichia coli.</em></div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly active and sustainable photocatalysts is crucial for environmental remediation. This work focuses on the enhanced photocatalytic degradation efficiency of synthetic dyes using TiO2-coated AC hybrid photocatalysts under MNB aeration. The TiO2-coated AC hybrid photocatalyst (HP) was synthesized via a sol-gel method and characterized using XRD, FTIR, SEM, EDS, HR-TEM, and DRS. The study investigated the photocatalytic degradation of three dyes indigo carmine (IC), reactive black 5 (RB5), and methylene blue (MB) in wastewater, with initial dye concentrations ranging from 10 to 100 μM. Under UVA irradiation, the hybrid photocatalyst with MNB aeration (HP + UVA + MNB) achieved the highest degradation efficiencies of 69.09%, 60.06%, and 55.19% for IC, MB, and RB5, respectively. Further analysis showed that the chromophores and complex structures of these dyes were broken into intermediate products. The Langmuir-Hinshelwood kinetic model was used to describe the reaction mechanisms. The HP + UVA + MNB system demonstrated superior photocatalytic degradation activity, making it suitable for operational and environmental applications in dye wastewater treatment. Additionally, the antibacterial properties of AC and HP were tested at 100 μg/mL, showing effectiveness against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.