Cyber-Physical Optimization of Production Processes Using Cascade AIs: A Robot-Guided MAG Welding Use-Case

Peter Burggräf , Fabian Steinberg , Philipp Nettesheim , Gerald Kolter
{"title":"Cyber-Physical Optimization of Production Processes Using Cascade AIs: A Robot-Guided MAG Welding Use-Case","authors":"Peter Burggräf ,&nbsp;Fabian Steinberg ,&nbsp;Philipp Nettesheim ,&nbsp;Gerald Kolter","doi":"10.1016/j.procir.2024.08.342","DOIUrl":null,"url":null,"abstract":"<div><div>In last year's article, we proposed a cyber-physical optimization of a robot-guided gas metal arc welding process using two artificial intelligences. These are set up in a cascade to control the welding parameter. This means the first AI performs a rough adjustment of the parameter, while the fine-tuning is done by the second AI. In this paper, we present the results when using this setup. The predicted welding parameter are close to the ideal parameter found experimentally. These findings are already seen with relatively low training data.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"126 ","pages":"Pages 295-300"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124009132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In last year's article, we proposed a cyber-physical optimization of a robot-guided gas metal arc welding process using two artificial intelligences. These are set up in a cascade to control the welding parameter. This means the first AI performs a rough adjustment of the parameter, while the fine-tuning is done by the second AI. In this paper, we present the results when using this setup. The predicted welding parameter are close to the ideal parameter found experimentally. These findings are already seen with relatively low training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用级联人工智能对生产流程进行网络物理优化:机器人引导的 MAG 焊接应用案例
在去年的文章中,我们提出了利用两个人工智能对机器人引导的金属气弧焊接过程进行网络物理优化。这两个人工智能以级联方式控制焊接参数。这意味着第一个人工智能对参数进行粗略调整,而微调则由第二个人工智能完成。在本文中,我们介绍了使用这种设置的结果。预测的焊接参数接近实验中发现的理想参数。在训练数据相对较少的情况下,这些结果已经显现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1