Deep Learning Approach for Enhanced Transferability and Learning Capacity in Tool Wear Estimation

Zongshuo Li , Markus Meurer , Thomas Bergs
{"title":"Deep Learning Approach for Enhanced Transferability and Learning Capacity in Tool Wear Estimation","authors":"Zongshuo Li ,&nbsp;Markus Meurer ,&nbsp;Thomas Bergs","doi":"10.1016/j.procir.2024.08.376","DOIUrl":null,"url":null,"abstract":"<div><div>As an integral part of contemporary manufacturing, monitoring systems obtain valuable information during machining to oversee the condition of both the process and the machine. Recently, diverse algorithms have been employed to detect tool wear using single or multiple sources of measurements. In this study, a deep learning approach is proposed for estimating tool wear, considering cutting parameters. The model's accuracy and transferability in tool wear estimation were assessed with milling experiments conducted under varying cutting parameters. The results indicate that the proposed method outperforms conventional methods in terms of both transferability and rapid learning capabilities.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"126 ","pages":"Pages 360-365"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221282712400948X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an integral part of contemporary manufacturing, monitoring systems obtain valuable information during machining to oversee the condition of both the process and the machine. Recently, diverse algorithms have been employed to detect tool wear using single or multiple sources of measurements. In this study, a deep learning approach is proposed for estimating tool wear, considering cutting parameters. The model's accuracy and transferability in tool wear estimation were assessed with milling experiments conducted under varying cutting parameters. The results indicate that the proposed method outperforms conventional methods in terms of both transferability and rapid learning capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习方法提高刀具磨损估算的可转移性和学习能力
作为当代制造业不可或缺的一部分,监控系统可在加工过程中获取有价值的信息,以监督加工过程和机床的状况。最近,人们采用了多种算法,利用单个或多个测量源检测刀具磨损。本研究提出了一种深度学习方法,用于估计刀具磨损,同时考虑切削参数。通过在不同切削参数下进行的铣削实验,评估了该模型在刀具磨损估算方面的准确性和可移植性。结果表明,所提出的方法在可移植性和快速学习能力方面均优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1