A Generalized Multi-Stage Deep Machine Learning Framework for Tool Wear Level Prediction in Milling Operations

Mahmoud Hassan , Ayman Mohamed , Helmi Attia
{"title":"A Generalized Multi-Stage Deep Machine Learning Framework for Tool Wear Level Prediction in Milling Operations","authors":"Mahmoud Hassan ,&nbsp;Ayman Mohamed ,&nbsp;Helmi Attia","doi":"10.1016/j.procir.2024.08.395","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a tool condition monitoring system based on a generalized multi-stage deep machine learning framework for real-time measurement of flank wear in milling processes. At low computational cost, a deep wavelet scattering convolution neural network framework was developed and optimized to generate low-variant features. Discriminative features were automatically selected using a neighborhood component analysis. A gaussian process regression (GPR) model was developed for feature fusion and tool wear measurement. The model was benchmarked against different machine learning algorithms. Extensive experimental validation tests demonstrated the GPR model superiority under various cutting conditions, which facilitates its implementation in industrial facilities.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"126 ","pages":"Pages 441-446"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124009673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a tool condition monitoring system based on a generalized multi-stage deep machine learning framework for real-time measurement of flank wear in milling processes. At low computational cost, a deep wavelet scattering convolution neural network framework was developed and optimized to generate low-variant features. Discriminative features were automatically selected using a neighborhood component analysis. A gaussian process regression (GPR) model was developed for feature fusion and tool wear measurement. The model was benchmarked against different machine learning algorithms. Extensive experimental validation tests demonstrated the GPR model superiority under various cutting conditions, which facilitates its implementation in industrial facilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于铣削操作中刀具磨损程度预测的通用多阶段深度机器学习框架
本研究提出了一种基于广义多级深度机器学习框架的刀具状态监测系统,用于实时测量铣削过程中的齿面磨损。以较低的计算成本开发并优化了深度小波散射卷积神经网络框架,以生成低变异特征。利用邻域成分分析自动选择了具有区分性的特征。为特征融合和刀具磨损测量开发了高斯过程回归(GPR)模型。该模型以不同的机器学习算法为基准。广泛的实验验证测试证明了 GPR 模型在各种切削条件下的优越性,这为其在工业设备中的应用提供了便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1