Modeling sediment movement in the shallow-water framework: A morpho-hydrodynamic approach with numerical simulations and experimental validation

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-10-05 DOI:10.1016/j.ocemod.2024.102445
E. Guerrero Fernández , M.J. Castro Díaz , Y. Wei , C. Moore
{"title":"Modeling sediment movement in the shallow-water framework: A morpho-hydrodynamic approach with numerical simulations and experimental validation","authors":"E. Guerrero Fernández ,&nbsp;M.J. Castro Díaz ,&nbsp;Y. Wei ,&nbsp;C. Moore","doi":"10.1016/j.ocemod.2024.102445","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a morpho-hydrodynamic model and a numerical approximation designed for the fast and accurate simulation of sediment movement associated with extreme events, such as tsunamis. The model integrates the well-established hydrostatic shallow-water equations with a transport equation for the moving bathymetry that relies on a bedload transport function. Subsequently, this model is discretized using the path-conservative finite volume framework to yield a numerical scheme that is not only fast but also second-order accurate and well-balanced for the lake-at-rest solution. The numerical discretization separates the hydrodynamic and morphodynamic components of the model but leverages the eigenstructure information to evolve the morphologic part in an upwind fashion, preventing spurious oscillations. The study includes various numerical experiments, incorporating comparisons with laboratory experimental data and field surveys.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102445"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146350032400132X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a morpho-hydrodynamic model and a numerical approximation designed for the fast and accurate simulation of sediment movement associated with extreme events, such as tsunamis. The model integrates the well-established hydrostatic shallow-water equations with a transport equation for the moving bathymetry that relies on a bedload transport function. Subsequently, this model is discretized using the path-conservative finite volume framework to yield a numerical scheme that is not only fast but also second-order accurate and well-balanced for the lake-at-rest solution. The numerical discretization separates the hydrodynamic and morphodynamic components of the model but leverages the eigenstructure information to evolve the morphologic part in an upwind fashion, preventing spurious oscillations. The study includes various numerical experiments, incorporating comparisons with laboratory experimental data and field surveys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅水框架中的沉积物运动建模:通过数值模拟和实验验证的形态流体力学方法
这项研究提出了一种形态-流体动力学模型和数值近似方法,旨在快速准确地模拟与海啸等极端事件有关的沉积物运动。该模型将成熟的静水浅水方程与依赖于床面负荷传输函数的移动水深传输方程整合在一起。随后,利用路径保守有限体积框架对该模型进行离散化处理,从而得到不仅速度快,而且二阶精度高、平衡性好的湖泊静止解数值方案。数值离散化将模型的水动力和形态动力部分分开,但利用特征结构信息以逆风方式演化形态部分,从而防止出现虚假振荡。研究包括各种数值实验,并与实验室实验数据和实地调查进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Low power computation of transoceanic wave propagation for tsunami hazard mitigation Discrete variance decay analysis of spurious mixing Global tsunami modelling on a spherical multiple-cell grid Accuracy assessment of recent global ocean tide models in coastal waters of the European North West Shelf Enhancing model temperature estimations in shallow, turbid, coastal regions: Mobile Bay, Alabama
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1