Optimizing target control in complex networks using edge-addition cost

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2024-09-27 DOI:10.1016/j.cnsns.2024.108371
Linying Xiang , Shuwei Yao , Xiao Wang , Zeya Zhu
{"title":"Optimizing target control in complex networks using edge-addition cost","authors":"Linying Xiang ,&nbsp;Shuwei Yao ,&nbsp;Xiao Wang ,&nbsp;Zeya Zhu","doi":"10.1016/j.cnsns.2024.108371","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates optimal target control of complex networks through modifications in network topology. A novel edge-addition algorithm is proposed to ensure structural target controllability in directed networks with a single input. An edge-addition cost is introduced to measure the efficiency of achieving target control objectives. The relationships between the target node selection and the average node degree, respectively, and the edge-addition cost are examined by numerical simulations. It concludes that both the choice of target nodes and the average node degree significantly influence the cost-effectiveness of achieving target control. These findings offer valuable insights for the design of optimal networks in practical applications.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005562","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates optimal target control of complex networks through modifications in network topology. A novel edge-addition algorithm is proposed to ensure structural target controllability in directed networks with a single input. An edge-addition cost is introduced to measure the efficiency of achieving target control objectives. The relationships between the target node selection and the average node degree, respectively, and the edge-addition cost are examined by numerical simulations. It concludes that both the choice of target nodes and the average node degree significantly influence the cost-effectiveness of achieving target control. These findings offer valuable insights for the design of optimal networks in practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用边缘附加成本优化复杂网络中的目标控制
本文研究了通过修改网络拓扑结构实现复杂网络的最佳目标控制。本文提出了一种新颖的边缘添加算法,以确保具有单一输入的有向网络的结构目标可控性。引入了边缘添加成本来衡量实现目标控制目标的效率。通过数值模拟研究了目标节点选择和平均节点度分别与加边成本之间的关系。结果表明,目标节点的选择和平均节点度都会对实现目标控制的成本效益产生重大影响。这些发现为在实际应用中设计最优网络提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Fractional derivative of Hermite fractal splines on the fractional-order delayed neural networks synchronization An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers Existence of global attractor in reaction–diffusion model of obesity-induced Alzheimer’s disease and its control strategies A stabilized finite volume method based on the rotational pressure correction projection for the time-dependent incompressible MHD equations Structure-preserving weighted BDF2 methods for anisotropic Cahn–Hilliard model: Uniform/variable-time-steps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1