{"title":"Adaptive learning-based model predictive control for uncertain interconnected systems: A set membership identification approach","authors":"Ahmed Aboudonia, John Lygeros","doi":"10.1016/j.automatica.2024.111943","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel adaptive learning-based model predictive control (MPC) scheme for interconnected systems which can be decomposed into several smaller dynamically coupled subsystems with uncertain coupling. The proposed scheme is mainly divided into two main online phases; a learning phase and an adaptation phase. Set membership identification is used in the learning phase to learn an uncertainty set that contains the coupling strength using online data. In the adaptation phase, rigid tube-based robust MPC is used to compute the optimal predicted states and inputs. Besides computing the optimal trajectories, the MPC ingredients are adapted in the adaptation phase taking the learnt uncertainty set into account. These MPC ingredients include the prestabilizing controller, the rigid tube, the tightened constraints and the terminal ingredients. The recursive feasibility of the proposed scheme as well as the stability of the corresponding closed-loop system are discussed. The developed scheme is compared in simulations to existing schemes including robust, adaptive and learning-based MPC.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004370","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel adaptive learning-based model predictive control (MPC) scheme for interconnected systems which can be decomposed into several smaller dynamically coupled subsystems with uncertain coupling. The proposed scheme is mainly divided into two main online phases; a learning phase and an adaptation phase. Set membership identification is used in the learning phase to learn an uncertainty set that contains the coupling strength using online data. In the adaptation phase, rigid tube-based robust MPC is used to compute the optimal predicted states and inputs. Besides computing the optimal trajectories, the MPC ingredients are adapted in the adaptation phase taking the learnt uncertainty set into account. These MPC ingredients include the prestabilizing controller, the rigid tube, the tightened constraints and the terminal ingredients. The recursive feasibility of the proposed scheme as well as the stability of the corresponding closed-loop system are discussed. The developed scheme is compared in simulations to existing schemes including robust, adaptive and learning-based MPC.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.