Impact of a compound droplet on a solid surface: The effect of the shell on the core

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-10-05 DOI:10.1016/j.expthermflusci.2024.111330
{"title":"Impact of a compound droplet on a solid surface: The effect of the shell on the core","authors":"","doi":"10.1016/j.expthermflusci.2024.111330","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic behavior of compound droplets impacting a solid surface was studied via experiments over <span><math><mi>κ</mi></math></span> (defined as the ratio of the compound droplet shell thickness <em>h</em> to the diameter <em>D<sub>0</sub></em> of compound droplet) ranging from 0 to 0.34, <em>We</em> ranging from 25 to 325 and <em>Re</em> ranging from 165.3 to 3405.2. The spreading diameter ratio, the maximum spreading dynamic contact angle and spreading speed of the core were investigated. Four modalities of the core of compound droplets were observed on the solid surface, including a) core rebound, b) no rebound, c) core splitting rebound, d) core splitting. The results revealed that the thickness of the shell, <em>We,</em> and the viscosity of the shell have a significant effect on the rebound and spreading processes of the core of the compound droplet. The high viscosity oil shell is conducive to its spreading. As the thickness of the oil shell increases, its cushioning effect on the water core also increases. In addition,<span><math><mrow><mi>κ</mi><mo>=</mo><mn>0.02254</mn><msup><mrow><mi>We</mi></mrow><mrow><mn>0.503</mn></mrow></msup><mo>,</mo><mi>κ</mi><mo>=</mo><mo>-</mo><mn>0.336</mn><msup><mrow><mi>e</mi></mrow><mfenced><mrow><mo>-</mo><mfrac><mrow><mi>We</mi></mrow><mrow><mn>121.056</mn></mrow></mfrac><mo>+</mo><mn>0.319</mn></mrow></mfenced></msup></mrow></math></span> and <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0.06086</mn><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfrac><mrow><mi>We</mi></mrow><mrow><mn>121.056</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>0.07716</mn><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfrac><mrow><mi>We</mi></mrow><mrow><mn>121.70598</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>0.01595</mn></mrow></math></span> were used to divide the modal boundary of the compound droplet core. Further analysis reveals the correlation between <em>We</em>, <em>Re</em>, <span><math><msub><mi>β</mi><mi>m</mi></msub></math></span> and.<span><math><mrow><mi>κ</mi><mo>,</mo><mspace></mspace><mfenced><mrow><mn>12</mn><mo>+</mo><mi>W</mi><mi>e</mi></mrow></mfenced><msub><mi>β</mi><mi>m</mi></msub><mspace></mspace><mo>=</mo><mn>8</mn><mo>+</mo><mn>3</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mi>c</mi><mi>o</mi><mi>s</mi><mfenced><mrow><mn>22.78</mn><mo>+</mo><mn>84.57</mn><mi>κ</mi></mrow></mfenced></mrow></mfenced><msubsup><mi>β</mi><mrow><mi>m</mi></mrow><mn>3</mn></msubsup><mo>+</mo><mn>0.955</mn><mfrac><msup><mrow><mi>We</mi></mrow><mrow><mn>1.05</mn></mrow></msup><mrow><mi>Re</mi></mrow></mfrac><msubsup><mi>β</mi><mrow><mi>m</mi></mrow><mrow><mn>6.5</mn></mrow></msubsup><mspace></mspace><mo>.</mo></mrow></math></span></div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic behavior of compound droplets impacting a solid surface was studied via experiments over κ (defined as the ratio of the compound droplet shell thickness h to the diameter D0 of compound droplet) ranging from 0 to 0.34, We ranging from 25 to 325 and Re ranging from 165.3 to 3405.2. The spreading diameter ratio, the maximum spreading dynamic contact angle and spreading speed of the core were investigated. Four modalities of the core of compound droplets were observed on the solid surface, including a) core rebound, b) no rebound, c) core splitting rebound, d) core splitting. The results revealed that the thickness of the shell, We, and the viscosity of the shell have a significant effect on the rebound and spreading processes of the core of the compound droplet. The high viscosity oil shell is conducive to its spreading. As the thickness of the oil shell increases, its cushioning effect on the water core also increases. In addition,κ=0.02254We0.503,κ=-0.336e-We121.056+0.319 and κ=0.06086e-We121.056+0.07716e-We121.70598+0.01595 were used to divide the modal boundary of the compound droplet core. Further analysis reveals the correlation between We, Re, βm and.κ,12+Weβm=8+31-cos22.78+84.57κβm3+0.955We1.05Reβm6.5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合液滴对固体表面的影响:外壳对核心的影响
通过实验研究了复合液滴撞击固体表面的动态行为,κ(定义为复合液滴外壳厚度 h 与复合液滴直径 D0 之比)范围为 0 至 0.34,We 范围为 25 至 325,Re 范围为 165.3 至 3405.2。研究了核心的铺展直径比、最大铺展动态接触角和铺展速度。在固体表面观察到复合液滴核心的四种模式,包括 a) 核心反弹,b) 无反弹,c) 核心分裂反弹,d) 核心分裂。结果表明,壳的厚度、We 和壳的粘度对复合液滴核心的反弹和扩散过程有显著影响。高粘度油壳有利于其扩散。随着油壳厚度的增加,其对水核的缓冲作用也会增加。此外,κ=0.02254We0.503、κ=-0.336e-We121.056+0.319 和κ=0.06086e-We121.056+0.07716e-We121.70598+0.01595 被用来划分复合液滴核心的模态边界。进一步分析发现,We、Re、βm 和.κ,12+Weβm=8+31-cos22.78+84.57κβm3+0.955We1.05Reβm6.5 之间存在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Characterizing the development of gravity-driven slug flows using high-speed imaging and PIV-PLIF techniques Error analysis and improvement of water displacement method in measuring gas desorption volume from coal particles Impact of piezoelectric driving waveform on performance characteristics of vibrating mesh atomizer (VMA) Impact of a compound droplet on a solid surface: The effect of the shell on the core Investigation on intermittent flow characteristics in horizontal pipe by visualization measurement method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1