Mohamed Boucetta , Hamza El Ouali , Hicham Lebzioui
{"title":"Pseudo-Euclidean Novikov algebras of arbitrary signature","authors":"Mohamed Boucetta , Hamza El Ouali , Hicham Lebzioui","doi":"10.1016/j.geomphys.2024.105334","DOIUrl":null,"url":null,"abstract":"<div><div>A pseudo-Euclidean Novikov algebra <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is a Novikov algebra <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>)</mo></math></span> endowed with a non-degenerate symmetric bilinear form such that left multiplications are skew-symmetric. If <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span> is of signature <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> then <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is called a Lorentzian Novikov algebra. In (H. Lebzioui, 2020 <span><span>[11]</span></span>), the author studied Lorentzian Novikov algebras and showed that a Lorentzian Novikov algebra is transitive. In this paper, we study pseudo-Euclidean Novikov algebras in the general case, where <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span> is of arbitrary signature. We show that a pseudo-Euclidean Novikov algebra of arbitrary signature must be transitive and the associated Lie algebra is two-solvable. This implies that a flat left-invariant pseudo-Riemannian metric on a corresponding Lie group is geodesically complete. We show that if <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is a pseudo-Euclidean Novikov algebra such that <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is non-degenerate then the underlying Lie algebra is a Milnor Lie algebra; that is <span><math><mi>g</mi><mo>=</mo><mi>b</mi><mo>⊕</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>, where <span><math><mi>b</mi></math></span> is a sub-Lie algebra, <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is a sub-Lie ideal and <span><math><msub><mrow><mi>ad</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span>-skew symmetric for any <span><math><mi>b</mi><mo>∈</mo><mi>b</mi></math></span>. If <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is degenerate, then we show that we can obtain the pseudo-Euclidean Novikov algebra through a double extension process starting from a Milnor Lie algebra. Finally, as applications, we classify all pseudo-Euclidean Novikov algebras of dimension ≤5 such that <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is degenerate.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002353","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A pseudo-Euclidean Novikov algebra is a Novikov algebra endowed with a non-degenerate symmetric bilinear form such that left multiplications are skew-symmetric. If is of signature then is called a Lorentzian Novikov algebra. In (H. Lebzioui, 2020 [11]), the author studied Lorentzian Novikov algebras and showed that a Lorentzian Novikov algebra is transitive. In this paper, we study pseudo-Euclidean Novikov algebras in the general case, where is of arbitrary signature. We show that a pseudo-Euclidean Novikov algebra of arbitrary signature must be transitive and the associated Lie algebra is two-solvable. This implies that a flat left-invariant pseudo-Riemannian metric on a corresponding Lie group is geodesically complete. We show that if is a pseudo-Euclidean Novikov algebra such that is non-degenerate then the underlying Lie algebra is a Milnor Lie algebra; that is , where is a sub-Lie algebra, is a sub-Lie ideal and is -skew symmetric for any . If is degenerate, then we show that we can obtain the pseudo-Euclidean Novikov algebra through a double extension process starting from a Milnor Lie algebra. Finally, as applications, we classify all pseudo-Euclidean Novikov algebras of dimension ≤5 such that is degenerate.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity