{"title":"Fragmentation of disulfide bonds in the fragment molecular orbital method","authors":"Dmitri G. Fedorov","doi":"10.1016/j.comptc.2024.114885","DOIUrl":null,"url":null,"abstract":"<div><div>The disulfide bond order is analyzed in terms of localized molecular orbitals. Several schemes of fragment boundaries are proposed for defining fragments in proteins with sulfur bridges, and their accuracy is evaluated for the three-body expansion of the fragment molecular orbital method. Interactions of the ligand ibuprofen with residues in prostaglandin H(2) synthase-1 (PDB: 1EQG) are analyzed at the MP2 level. The role of sulfur bridges in the protein stability and ligand binding is discussed.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114885"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004249","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The disulfide bond order is analyzed in terms of localized molecular orbitals. Several schemes of fragment boundaries are proposed for defining fragments in proteins with sulfur bridges, and their accuracy is evaluated for the three-body expansion of the fragment molecular orbital method. Interactions of the ligand ibuprofen with residues in prostaglandin H(2) synthase-1 (PDB: 1EQG) are analyzed at the MP2 level. The role of sulfur bridges in the protein stability and ligand binding is discussed.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.