CSStereo: A UAV scenarios stereo matching network enhanced with contrastive learning and feature selection

Xuefeng Cao , Xiaoyi Zhang , Anzhu Yu , Wenshuai Yu , Shuhui Bu
{"title":"CSStereo: A UAV scenarios stereo matching network enhanced with contrastive learning and feature selection","authors":"Xuefeng Cao ,&nbsp;Xiaoyi Zhang ,&nbsp;Anzhu Yu ,&nbsp;Wenshuai Yu ,&nbsp;Shuhui Bu","doi":"10.1016/j.jag.2024.104189","DOIUrl":null,"url":null,"abstract":"<div><div>Stereo matching is essential for establishing pixel-level correspondences and estimating depth in scene reconstruction. However, applying stereo matching networks to UAV scenarios presents unique challenges due to varying altitudes, angles, and rapidly changing conditions, unlike the controlled settings in autonomous driving or the uniform scenes in satellite imagery. To address these UAV-specific challenges, we propose the CSStereo network (Contrastive Learning and Feature Selection Stereo Matching Network), which integrates contrastive learning and feature selection modules. The contrastive learning module enhances feature representation by comparing similarities and differences between samples, thereby improving discrimination among features in UAV scenarios. The feature selection module enhances robustness and generalization across different UAV scenarios by selecting relevant and informative features. Extensive experimental evaluations demonstrate the effectiveness of CSStereo in UAV scenarios, and show superior performance in both qualitative and quantitative assessments.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104189"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Stereo matching is essential for establishing pixel-level correspondences and estimating depth in scene reconstruction. However, applying stereo matching networks to UAV scenarios presents unique challenges due to varying altitudes, angles, and rapidly changing conditions, unlike the controlled settings in autonomous driving or the uniform scenes in satellite imagery. To address these UAV-specific challenges, we propose the CSStereo network (Contrastive Learning and Feature Selection Stereo Matching Network), which integrates contrastive learning and feature selection modules. The contrastive learning module enhances feature representation by comparing similarities and differences between samples, thereby improving discrimination among features in UAV scenarios. The feature selection module enhances robustness and generalization across different UAV scenarios by selecting relevant and informative features. Extensive experimental evaluations demonstrate the effectiveness of CSStereo in UAV scenarios, and show superior performance in both qualitative and quantitative assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSStereo:利用对比学习和特征选择增强的无人机场景立体匹配网络
立体匹配对于在场景重建中建立像素级对应关系和估计深度至关重要。然而,与自动驾驶中的受控环境或卫星图像中的统一场景不同,由于高度、角度和条件瞬息万变,在无人机场景中应用立体匹配网络面临着独特的挑战。为了应对这些无人机特有的挑战,我们提出了 CSStereo 网络(对比学习和特征选择立体匹配网络),该网络集成了对比学习和特征选择模块。对比学习模块通过比较样本之间的相似性和差异性来增强特征表示,从而提高无人机场景中特征之间的辨别能力。特征选择模块通过选择相关和信息量大的特征来增强不同无人机场景下的鲁棒性和泛化能力。广泛的实验评估证明了 CSStereo 在无人机应用场景中的有效性,并在定性和定量评估中显示出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Wildfire susceptibility mapping with multiple machine learning algorithms utilizing forest inventory and FIRMS data: A case study in Arsin, Trabzon, Türkiye Large-scale forest resource mapping with spatial gaps in the training data: Comparison of different modeling approaches Integrated and simultaneous mapping of blue carbon ecosystems by using tide-level, phenological, and biophysical features from optical and SAR images A novel two-step method for ratoon rice mapping using Sentinel-1/2 time series Modular and adaptive implementation of Semantic Segmentation Models for Satellite Images and Open Source tools suitable for complex geographical contexts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1