Main lessons learnt from 40 years of R&D on iodine source term prediction: Identification of the main parameters governing iodine volatility in PHEBUS FP tests
{"title":"Main lessons learnt from 40 years of R&D on iodine source term prediction: Identification of the main parameters governing iodine volatility in PHEBUS FP tests","authors":"","doi":"10.1016/j.pnucene.2024.105473","DOIUrl":null,"url":null,"abstract":"<div><div>Iodine chemistry and phenomenology in the containment has been studied for several decades. The main phenomena leading to the formation of volatile iodine have been identified step by step and their kinetics has been modeled and capitalized over the years in ASTEC-SOPHAEROS IRSN Severe Accident (S.A) code. Recently, the uncertainties for each phenomenon have been quantified and uncertainty propagation calculations have been performed on PHEBUS FPT-0/1/2/3 tests within the objective to identify which phenomena govern iodine volatility. The main highlights from PHEBUS studies are that (1) the sump reactions do not contribute to iodine volatility and (2) the gaseous phase chemical reactions are the main contributor to iodine volatility and (3) only a few gaseous reactions govern iodine volatility in PHEBUS containment. Another objective was to narrow the estimated range of %I<sub>2_RCS</sub> (gaseous iodine fraction coming from the RCS). The results show that, considering 43 uncertain parameters, the iodine volatility plume is compatible with the experimental data whatever 2% < %I<sub>2_RCS</sub> < 50% that mostly govern iodine volatility in the first days. It also indicates that, as soon as the FP release from the core is stopped and whatever 2% < %I<sub>2_RCS</sub> < 50%, the influence of %I<sub>2_RCS</sub> decreases over time so that the main processes leading to iodine volatility are slowly switched from %I<sub>2_RCS</sub> (short term) to other gaseous phenomena (long term). The influence of %I<sub>2_RCS</sub> on iodine volatility is thus important in the short term but becomes less and less significant in the long term (after several days). A more complete analysis is necessary for reactor applications to identify if the same conclusions can be drawn.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iodine chemistry and phenomenology in the containment has been studied for several decades. The main phenomena leading to the formation of volatile iodine have been identified step by step and their kinetics has been modeled and capitalized over the years in ASTEC-SOPHAEROS IRSN Severe Accident (S.A) code. Recently, the uncertainties for each phenomenon have been quantified and uncertainty propagation calculations have been performed on PHEBUS FPT-0/1/2/3 tests within the objective to identify which phenomena govern iodine volatility. The main highlights from PHEBUS studies are that (1) the sump reactions do not contribute to iodine volatility and (2) the gaseous phase chemical reactions are the main contributor to iodine volatility and (3) only a few gaseous reactions govern iodine volatility in PHEBUS containment. Another objective was to narrow the estimated range of %I2_RCS (gaseous iodine fraction coming from the RCS). The results show that, considering 43 uncertain parameters, the iodine volatility plume is compatible with the experimental data whatever 2% < %I2_RCS < 50% that mostly govern iodine volatility in the first days. It also indicates that, as soon as the FP release from the core is stopped and whatever 2% < %I2_RCS < 50%, the influence of %I2_RCS decreases over time so that the main processes leading to iodine volatility are slowly switched from %I2_RCS (short term) to other gaseous phenomena (long term). The influence of %I2_RCS on iodine volatility is thus important in the short term but becomes less and less significant in the long term (after several days). A more complete analysis is necessary for reactor applications to identify if the same conclusions can be drawn.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.