Jian Cheng , Hongqin Lei , Yong Xiao , Linjie Zhao , Mingjun Chen , Youwang Hu , Qi Liu , Dinghuai Yang , Wenyu Ding , Guang Chen
{"title":"Achievement of ductile-regime removal in fabricating Gaussian curved microstructure processed by micro ball-end milling on soft-brittle KDP surface","authors":"Jian Cheng , Hongqin Lei , Yong Xiao , Linjie Zhao , Mingjun Chen , Youwang Hu , Qi Liu , Dinghuai Yang , Wenyu Ding , Guang Chen","doi":"10.1016/j.jmapro.2024.09.103","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-induced damage points (known as defects) would seriously reduce the service life of large-aperture KDP optics in high-power laser devices. The ball-end milling procedure is recognized as an efficient method for creating a Gaussian mitigation pit (GMP) to restore the optical transmission performance of functional KDP crystals by removing defects. Nevertheless, achieving smooth and flawless Gaussian curved microstructures is a massive challenge for soft-brittle KDP crystals. Herein, a judging criterion of the ductile-regime machining for the GMP is developed by the models of uncut chip thickness (UCT) and critical milling depth. Simultaneously, the obtained judging criterion can be validated by the microstructure fabrication experiments. Besides, considering the spindle vibration, plowing effect, and machined surface texture, the influence of spindle speed (<em>n</em>), feed rate (<em>f</em>), and tool mark interval (<em>d</em>) on the surface formation mechanism of the GMP is analyzed, respectively. It can be discovered that the <em>n</em> of up to 60,000 r/min can lead to severe velocity fluctuation of the motion system, increasing the UCT and causing brittle fractures on the KDP surface. A low <em>f</em> can result in an undesirable plowing phenomenon, and a large number of crystal materials are accumulated in the up-cut process. Once the <em>f</em> reaches 72 mm/min, the tool path would fluctuate significantly, resulting in poor GMP surface texture. When the <em>d</em> exceeds 15 μm, the surface quality of the GMP can no longer meet the engineering requirements of the <em>Ra</em> ≤ 50 nm. Moreover, the optimized processing parameters of the microstructure fabrication are 47,800 r/min in the <em>n</em>, 30 mm/min in the <em>f</em>, and 5 μm in the <em>d</em>. This study can provide crucial guidance for obtaining the ultra-smooth and defect-free GMP processed in the ductile regime, which would resultantly possess significant theoretical importance and practical value in enhancing the optical properties of flawed KDP crystals.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"131 ","pages":"Pages 1230-1239"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524010259","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced damage points (known as defects) would seriously reduce the service life of large-aperture KDP optics in high-power laser devices. The ball-end milling procedure is recognized as an efficient method for creating a Gaussian mitigation pit (GMP) to restore the optical transmission performance of functional KDP crystals by removing defects. Nevertheless, achieving smooth and flawless Gaussian curved microstructures is a massive challenge for soft-brittle KDP crystals. Herein, a judging criterion of the ductile-regime machining for the GMP is developed by the models of uncut chip thickness (UCT) and critical milling depth. Simultaneously, the obtained judging criterion can be validated by the microstructure fabrication experiments. Besides, considering the spindle vibration, plowing effect, and machined surface texture, the influence of spindle speed (n), feed rate (f), and tool mark interval (d) on the surface formation mechanism of the GMP is analyzed, respectively. It can be discovered that the n of up to 60,000 r/min can lead to severe velocity fluctuation of the motion system, increasing the UCT and causing brittle fractures on the KDP surface. A low f can result in an undesirable plowing phenomenon, and a large number of crystal materials are accumulated in the up-cut process. Once the f reaches 72 mm/min, the tool path would fluctuate significantly, resulting in poor GMP surface texture. When the d exceeds 15 μm, the surface quality of the GMP can no longer meet the engineering requirements of the Ra ≤ 50 nm. Moreover, the optimized processing parameters of the microstructure fabrication are 47,800 r/min in the n, 30 mm/min in the f, and 5 μm in the d. This study can provide crucial guidance for obtaining the ultra-smooth and defect-free GMP processed in the ductile regime, which would resultantly possess significant theoretical importance and practical value in enhancing the optical properties of flawed KDP crystals.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.