Zhifei Wang , Jun Li , Yakui Wang , Hongbin Ju , Lu Zhang , Yajie Jiang
{"title":"Catalytic amination of 1,6-hexanediol for synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine over Cu/Ni/Zn catalysts","authors":"Zhifei Wang , Jun Li , Yakui Wang , Hongbin Ju , Lu Zhang , Yajie Jiang","doi":"10.1016/j.mcat.2024.114601","DOIUrl":null,"url":null,"abstract":"<div><div>Synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine(TMHDA) by the amination of 1,6-hexanediol(HDO) and dimethylamine(DMA) at normal pressure over an outstanding Cu/Ni/Zn catalyst supported on aluminum oxide(γ-Al<sub>2</sub>O<sub>3</sub>) was studied in this article. Cu/Ni/Zn/γ-Al<sub>2</sub>O<sub>3</sub>(Cu: Ni: Zn = 28: 7: 12) exhibited excellent catalytic performance, which HDO was almost completely transformed and TMHDA reached 85 % selectivity at 200 °C. The amination of HDO required two hydrogenations and two dehydrogenations, and the selectivity of the amination catalyst depended on the balance of dehydrogenation and hydrogenation. Various characterization (TEM, BET, XRD, H<sub>2</sub>-TPR, XPS) demonstrated that the addition of Zn to the Cu/Ni catalyst could reduce the agglomeration of Cu/Ni particles and change the valence distribution of Cu. The Cu/Ni/Zn/γ-Al<sub>2</sub>O<sub>3</sub> catalyst was a very promising and green method for the synthesis of tertiary diamines through amination of diols.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114601"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007831","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine(TMHDA) by the amination of 1,6-hexanediol(HDO) and dimethylamine(DMA) at normal pressure over an outstanding Cu/Ni/Zn catalyst supported on aluminum oxide(γ-Al2O3) was studied in this article. Cu/Ni/Zn/γ-Al2O3(Cu: Ni: Zn = 28: 7: 12) exhibited excellent catalytic performance, which HDO was almost completely transformed and TMHDA reached 85 % selectivity at 200 °C. The amination of HDO required two hydrogenations and two dehydrogenations, and the selectivity of the amination catalyst depended on the balance of dehydrogenation and hydrogenation. Various characterization (TEM, BET, XRD, H2-TPR, XPS) demonstrated that the addition of Zn to the Cu/Ni catalyst could reduce the agglomeration of Cu/Ni particles and change the valence distribution of Cu. The Cu/Ni/Zn/γ-Al2O3 catalyst was a very promising and green method for the synthesis of tertiary diamines through amination of diols.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods