Yuqinxin Xie (谢雨沁欣), Dongzhi Wei (魏东芝), Jinping Lin (林金萍)
{"title":"Engineering an alcohol dehydrogenase from Gluconobacter oxydans for improved production of a bulky Ezetimibe intermediate","authors":"Yuqinxin Xie (谢雨沁欣), Dongzhi Wei (魏东芝), Jinping Lin (林金萍)","doi":"10.1016/j.mcat.2024.114586","DOIUrl":null,"url":null,"abstract":"<div><div>(4<em>S</em>)-3-[(5<em>S</em>)-5-(4-fluorophenyl)-5‑hydroxy-valyl]-4-phenyl-1,3-oxazacyclopentane-2-one ((<em>S</em>)-Fop alcohol) is a key chiral intermediate for the synthesis of ezetimibe, and could be synthesized via asymmetric reduction of (<em>S</em>)-4-phenyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-2-oxazolidione (Fop dione). However, discovering and engineering of ketoreductases toward bulky-bulky (diaryl) ketones is still challenging. Previously, we identified an alcohol dehydrogenase Gox0525 from <em>Gluconobacter oxydans</em> DSM2343 which possessed strict diastereoselectivity (<em>d.e.</em> value > 99%) but low activity toward Fop dione. In this study, a semi-rational design based on the focused rational iterative site-specific mutagenesis (FRISM) based on site-directed saturation mutagenesis was performed to improve the catalytic efficiency of Gox0525. The variant M4 (Y92G/P93M/Y94P/L151V) shows a 64-fold enhanced catalytic efficiency (<em>K</em><sub>cat</sub>/<em>K</em><sub>m</sub>) and 47-fold in specific activity compared with the wild type Gox0525. Engineered <em>Escherichia coli</em> cells co-expressing the variant M4 and glucose dehydrogenase from <em>Bacillus subtilis</em> (BsGDH) for NADPH regeneration were employed as biocatalysts for gram-scale reaction of Fop dione. As a result,95 mM (33.76 g/L) Fop dione was completely transformed within 4 h, affording (<em>S</em>)-Fop alcohol with > 99% <em>d.e.</em> value, the yield of 96%, and the space-time yield of 195.6 g/L/d.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114586"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007685","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
(4S)-3-[(5S)-5-(4-fluorophenyl)-5‑hydroxy-valyl]-4-phenyl-1,3-oxazacyclopentane-2-one ((S)-Fop alcohol) is a key chiral intermediate for the synthesis of ezetimibe, and could be synthesized via asymmetric reduction of (S)-4-phenyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-2-oxazolidione (Fop dione). However, discovering and engineering of ketoreductases toward bulky-bulky (diaryl) ketones is still challenging. Previously, we identified an alcohol dehydrogenase Gox0525 from Gluconobacter oxydans DSM2343 which possessed strict diastereoselectivity (d.e. value > 99%) but low activity toward Fop dione. In this study, a semi-rational design based on the focused rational iterative site-specific mutagenesis (FRISM) based on site-directed saturation mutagenesis was performed to improve the catalytic efficiency of Gox0525. The variant M4 (Y92G/P93M/Y94P/L151V) shows a 64-fold enhanced catalytic efficiency (Kcat/Km) and 47-fold in specific activity compared with the wild type Gox0525. Engineered Escherichia coli cells co-expressing the variant M4 and glucose dehydrogenase from Bacillus subtilis (BsGDH) for NADPH regeneration were employed as biocatalysts for gram-scale reaction of Fop dione. As a result,95 mM (33.76 g/L) Fop dione was completely transformed within 4 h, affording (S)-Fop alcohol with > 99% d.e. value, the yield of 96%, and the space-time yield of 195.6 g/L/d.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods