Weijie Fu , Yiming He , Shuilian Liu , Jian Chen , Jie Ren , Ruiyan Sun , Zhenchen Tang , Chalachew Mebrahtu , Huanhao Chen , Feng Zeng
{"title":"Inverse supported Al2O3/Coº catalysts for enhanced CO2 hydrogenation","authors":"Weijie Fu , Yiming He , Shuilian Liu , Jian Chen , Jie Ren , Ruiyan Sun , Zhenchen Tang , Chalachew Mebrahtu , Huanhao Chen , Feng Zeng","doi":"10.1016/j.mcat.2024.114598","DOIUrl":null,"url":null,"abstract":"<div><div>Inverse catalysts, characterized by their distinctive interfaces, demonstrate exceptional catalytic activity for CO<sub>2</sub> conversion. This study explores the synthesis of an Al-Co oxide/Co<sup>0</sup> inverse catalyst through the reduction of a Co-Al oxide with a high Co content, achieved by modulating the Co/Al ratio in the oxide precursor. The resulting inverse catalyst significantly enhances CO<sub>2</sub> hydrogenation, yielding increased production of methane, methanol, and ethanol, with a notable amplification in ethanol output. Amongst, the catalyst with a Co/Al ratio of 9:1 achieves high yields for methane (32,131 μmol/g, methanol (461 μmol/g), and ethanol (123 μmol/g). To elucidate the structure and reaction mechanism, the inverse catalyst was also characterized using a suite of techniques. It is posited that the abundance of active sites on the inverse catalyst, coupled with its moderate H binding affinity, facilitates CO<sub>2</sub> activation and conversion. This is particularly evident in the enhanced coupling of *HCOO and *CH<sub>3</sub> intermediates, which promotes ethanol synthesis. This research not only sheds light on the interactions between metal and metal oxide within Co-based catalysts for CO<sub>2</sub> hydrogenation but also proposes a facile method for crafting efficient catalysts for such processes.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114598"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007806","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inverse catalysts, characterized by their distinctive interfaces, demonstrate exceptional catalytic activity for CO2 conversion. This study explores the synthesis of an Al-Co oxide/Co0 inverse catalyst through the reduction of a Co-Al oxide with a high Co content, achieved by modulating the Co/Al ratio in the oxide precursor. The resulting inverse catalyst significantly enhances CO2 hydrogenation, yielding increased production of methane, methanol, and ethanol, with a notable amplification in ethanol output. Amongst, the catalyst with a Co/Al ratio of 9:1 achieves high yields for methane (32,131 μmol/g, methanol (461 μmol/g), and ethanol (123 μmol/g). To elucidate the structure and reaction mechanism, the inverse catalyst was also characterized using a suite of techniques. It is posited that the abundance of active sites on the inverse catalyst, coupled with its moderate H binding affinity, facilitates CO2 activation and conversion. This is particularly evident in the enhanced coupling of *HCOO and *CH3 intermediates, which promotes ethanol synthesis. This research not only sheds light on the interactions between metal and metal oxide within Co-based catalysts for CO2 hydrogenation but also proposes a facile method for crafting efficient catalysts for such processes.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods